Browse > Article
http://dx.doi.org/10.4014/jmb.1003.03032

The Effect of Protectants and pH Changes on the Cellular Growth and Succinic Acid Yield of Mannheimia succiniciproducens LPK7  

Oh, Young-Hoon (Department of Chemical and Biomolecular Engineering, Sogang University)
Oh, In-Jae (Department of Chemical and Biomolecular Engineering, Sogang University)
Jung, Chang-Kyou (Department of Chemical and Biomolecular Engineering, Sogang University)
Lee, Sang-Yup (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology)
Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.12, 2010 , pp. 1677-1680 More about this Journal
Abstract
The harmful effects of succinic acid and oxidative stress on cell growth were determined during batch fermentation with Mannheimia succiniciproducens LPK7, a powerful succinic acid-producing strain, and conditions were optimized to minimize these effects. In terms of toxicity, the cell concentration decreased as the concentration of succinic acid increased. By changing the pH from 6.5 to 7 during fermentation, the cell concentration increased by about 10%, and the level of succinic acid production was 6% higher than that of the control. In addition, by introducing protectants, the cell concentration increased by about 10%, and the level of succinic acid produced was increased by 3%.
Keywords
Mannheimia succiniciproducens LPK7; succinic acid, protectants (biotin, glutathione, trehalose); cellular growth; oxidative stress;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cao, Y. Y., Y. Wang, B. D. Dai, B. Wang, H. Zhang, Z. Y. Zhu, et al. 2008. Trehalose is an important mediator of Cap1p oxidative stress response in Candida albicans. Biol. Pharm. Bull. 31: 421-425.   DOI   ScienceOn
2 Song, H. H. and S. Y. Lee. 2006. Production of succinic acid by bacterial fermentation. Enzyme Microb. Technol. 39: 352-361.   DOI   ScienceOn
3 Urbance, S. E., A. L. Pometto III, A. A. DiSpirito, and Y. Denli. 2004. Evaluation of succinic acid continuous and repeat-batch biofilm fermentation by Actinobacillus succinogenes using plastic composite support bioreactors. Appl. Microbiol. Biotechnol. 65: 664-670.   DOI   ScienceOn
4 Zeikus, J. G., M. K. Jain, and P. Elankovan. 1999. Biotechnology of succinic acid production and markets for derived industrial products. Appl. Microbiol. Biotechnol. 51: 545-552.   DOI   ScienceOn
5 Oh, I. J., H. W. Lee, C. H. Park, S. Y. Lee, and J. W. Lee. 2008. Succinic acid production by continuous fermentation process using Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 18: 908-912.   과학기술학회마을
6 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410.
7 Podkovyrov, S. M. and J. G. Zeikus. 1993. Purification and characterization of phosphoenolpyruvate carboxykinase, a catabolic $CO_{2}$-fixing enzyme, from Anaerobiospirillum succiniciproducens. J. Gen. Microbiol. 139: 223-228.   DOI   ScienceOn
8 Riccillo, P. M., C. I. Muglia, F. J. de Bruijn, A. J. Roe, I. R. Booth, and O. M. Aguilar. 2000. Glutathione is involved in environmental stress responses in Rhizobium tropici, including acid tolerance. J. Bacteriol. 182: 1748-1753.   DOI   ScienceOn
9 Samuelov, N. S., R. Datta, M. K. Jain, and J. G. Zeikus. 1999. Whey fermentation by Anaerobiospirillum succiniciproducens for production of a succinate-based animal feed additive. Appl. Environ. Microbiol. 65: 2260-2263.
10 Kim, P., M. Laivenieks, J. McKinlay, C. Vieille, and J. G. Zeikus. 2004. Construction of a shuttle vector for the overexpression of recombinant proteins in Actinobacillus succinogenes. Plasmid 51: 108-115.   DOI   ScienceOn
11 Lee, P. C., S. Y. Lee, S. H. Hong, H. N. Chang, and S. C. Park. 2003. Biological conversion of wood hydrolysate to succinic acid by Anaerobiospirillum succiniciproducens. Biotechnol. Lett. 25: 111-114.   DOI   ScienceOn
12 Lee, P. C., S. Y. Lee, S. H. Hong, and H. N. Chang. 2002. Isolation and characterization of new succinic acid-producing bacterium, Mannheimia succiniciproducens MBEL55E, from bovine rumen. Appl. Microbiol. Biotechnol. 58: 663-668.   DOI   ScienceOn
13 Lee, S., S. H. Hong, S. H. Lee, and S. J. Park. 2004. Fermentative production of chemicals that can be used for polymer synthesis. Macromol. Biosci.15: 157-164.
14 Lee, S. J., H. H. Song, and S. Y. Lee. 2006. Genome-based metabolic engineering of Mannheimia succiniciproducens for succinic acid production. Appl. Environ. Microbiol. 72: 1939-1948.   DOI   ScienceOn
15 Oh, I. J., D. H. Kim, E. K. Oh, S. Y. Lee, and J. W. Lee. 2009. Optimization and scale-up of succinic acid production by Mannheimia succiniciproducens LPK7. J. Microbiol. Biotechnol. 19: 167-171.   과학기술학회마을   DOI
16 Guettler, M. V., D. Rumler, and M. K. Jain. 1999. Actinobacillus succinogenes sp. nov., a novel succinic-acidproducing strain from the bovine rumen. Int. J. Syst. Bacteriol. 49: 207-216.   DOI   ScienceOn
17 Hong, S. H., J. S. Kim, S. Y. Lee, Y. H. In, S. S. Choi, J. K. Rih, et al. 2004. The genome sequence of the capnophilic rumen bacterium Mannheimia succiniciproducens. Nat. Biotechnol. 22: 1275-1281.   DOI   ScienceOn
18 Jabalquinto, A. M., F. D. Gonzalez-Nilo, M. Laivenieks, M. Cabezas, J. G. Zeikus, and E. Cardemil. 2004. Anaerobiospirillum succiniciproducens phosphoenolpyruvate carboxykinase. Mutagenesis at metal site 1. Biochimie 86: 47-51.   DOI   ScienceOn