Browse > Article
http://dx.doi.org/10.4014/jmb.1004.04034

Biodegradation of Di-n-Butyl Phthalate by Rhodococcus sp. JDC-11 and Molecular Detection of 3,4-Phthalate Dioxygenase Gene  

Jin, De-Cai (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University)
Liang, Ren-Xing (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University)
Dai, Qin-Yun (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University)
Zhang, Rui-Yong (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University)
Wu, Xue-Ling (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University)
Chao, Wei-Liang (Department of Bioengineering, School of Minerals Processing and Bioengineering, Central South University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1440-1445 More about this Journal
Abstract
Rhodococcus sp. JDC-11, capable of utilizing di-n-butyl phthalate (DBP) as the sole source of carbon and energy, was isolated from sewage sludge and confirmed mainly based on 16S rRNA gene sequence analysis. The optimum pH, temperature, and agitation rate for DBP degradation by Rhodococcus sp. JDC-11 were 8.0, $30^{\circ}C$, and 175 rpm, respectively. In addition, low concentrations of glucose were found to inhibit the degradation of DBP, whereas high concentrations of glucose increased its degradation. Meanwhile, a substrate utilization test showed that JDC-11 was also able to utilize other phthalates. The major metabolites of DBP degradation were identified as monobutyl phthalate and phthalic acid by gas chromatography-mass spectrometry, allowing speculation on the tentative metabolic pathway of DBP degradation by Rhodococcus sp. JDC-11. Using a set of new degenerate primers, a partial sequence of the 3,4-phthalate dioxygenase gene was obtained from JDC-11. Moreover, a sequence analysis revealed that the phthalate dioxygenase gene of JDC-11 was highly homologous to the large subunit of the phthalate dioxygenase from Rhodococcus coprophilus strain G9.
Keywords
Isolation; DBP degradation; phthalate dioxygenase gene; metabolic pathway;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Kurane, R. 1997. Microbial degradation and treatment of polycyclic aromatic hydrocarbons and plasticizers. Ann. NY Acad. Sci. 829: 118-134.   DOI
2 Matsumoto, M., M. Hirata-Koizumi, and M. Ema. 2008. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction. Regul. Toxicol. Pharm. 50: 37-49.   DOI   ScienceOn
3 Staples, C. A., D. R. Peterson, T. F. Parkerton, and W. Adams. 1997. The environmental fate of phthalate esters: A literature review. Chemosphere 35: 667-749.   DOI   ScienceOn
4 Martínkova, L., B. Uhnakova, M. Patek, J. Nesvera, and V. K en. 2009. Biodegradation potential of the genus Rhodococcus. Environ. Int. 35: 162-177.   DOI   ScienceOn
5 Fuller, M. E. and J. F. Manning. 2004. Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors. Bioresour. Technol. 91: 123-133.   DOI   ScienceOn
6 Xu, X. R., J. D. Gu, H. B. Li, and X. Y. Li. 2005. Kinetics of di-n-butyl phthalate degradation by a bacterium isolated from mangrove sediment. J. Microbiol. Biotechnol. 15: 946-951.   과학기술학회마을
7 Zeng, F., K. Cui, X. Li, J. Fu, and G. Sheng. 2004. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1. Process. Biochem. 39: 1125-1129.   DOI   ScienceOn
8 Kim, Y. H., J. Min, K. D. Bae, M. B. Gu, and J. Lee. 2005. Biodegradation of dipropyl phthalate and toxicity of its degradation products: A comparison of Fusarium oxysporum f. sp. pisi cutinase and Candida cylindracea esterase. Arch. Microbiol. 184: 25-31.   DOI   ScienceOn
9 Li, J., J. Chen, Q. Zhao, X. Li, and W. Shu. 2006. Bioremediation of environmental endocrine disruptor di-n-butyl phthalate ester by Rhodococcus ruber. Chemosphere 65: 1627-1633.   DOI   ScienceOn
10 Liang, D. W., T. Zhang. H. Fang, and J. Z. He. 2008. Phthalates biodegradation in the environment. Appl. Microbiol. Biotechnol. 80: 183-198.   DOI   ScienceOn
11 Nalli, S., D. G. Cooper, and J. A. Nicell. 2002. Biodegradation of plasticizers by Rhodococcus rhodochrous. Biodegradation 13: 343-352.   DOI   ScienceOn
12 Wang, J., L. Chen, H. Shi, and Y. Qian. 2000. Microbial degradation of phthalic acid esters under anaerobic digestion of sludge. Chemosphere 41: 1245-1248.   DOI   ScienceOn
13 Patil, N. K., R. Kundapur, Y. S. Shouche, and T. B. Karegoudar. 2006. Degradation of a plasticizer, di-n-butylphthalate, by Delfia sp. TBKNP-05. Curr. Microbiol. 52: 369-374.   DOI   ScienceOn
14 Roslev, P., K. Vorkamp, J. Aarup, K. Frederiksen, and P. H. Nielsen. 2007. Degradation of phthalate esters in an activated sludge wastewater treatment plant. Water Res. 41: 969-976.   DOI   ScienceOn
15 Stingley, R. L., B. Brezna, A. A. Khan, and C. E. Cerniglia. 2004. Novel organization of genes in a phthalate degradation operon of Mycobacterium vanbaalenii PYR-1. Microbiology 150: 3749-3756.   DOI   ScienceOn
16 Chang, B. V., C. M. Yang, C. H. Cheng, and S. Y. Yuan. 2004. Biodegradation of phthalate esters by two bacteria strains. Chemosphere 55: 533-538.   DOI   ScienceOn
17 Chang, H. K. and G. J. Zylstra. 1998. Novel organization of the genes for phthalate degradation from Burkholderia cepacia DBO1. J. Bacteriol. 180: 6529-6537.
18 Chao, W. L., C. M. Lin, I. I. Shiung, and Y. L. Kuo. 2006. Degradation of dibutyl-phthalate by soil bacteria. Chemosphere 63: 1377-1383.   DOI   ScienceOn
19 Eaton, R. W. 2001. Plasmid-encoded phthalate catabolic pathway in Arthrobacter keyseri 12B. J. Bacteriol. 183: 3689-3703.   DOI   ScienceOn
20 Choi, K. Y., D. Kim, W. J. Sul, J. C. Chae, G. J. Zylstra, Y. M. Kim, and E. Kim. 2005. Molecular and biochemical analysis of phthalate and terephthalate degradation by Rhodococcus sp. strain DK17. FEMS Microbiol. Lett. 252: 207-213.   DOI   ScienceOn
21 Habe, H., M. Miyakoshi, J. Chung, K. Kasuga, T. Yoshida, H. Nojiri, and T. Omori. 2003. Phthalate catabolic gene cluster is linked to the angular dioxygenase gene in Terrabacter sp. strain DBF63. Appl. Microbiol. Biotechnol. 61: 44-54.   DOI
22 Jackson, M. A., D. P. Labeda, and L. A. Becker. 1996. Isolation of bacteria and fungi for the hydrolysis of phthalate and terephthalate esters. J. Ind. Microbiol. 16: 301-304.   DOI   ScienceOn
23 Kapanen, A., J. R. Stephen, J. Bruggemann, and A. Kiviranta. 2007. Diethyl phthalate in compost: Ecotoxicological effects and response of the microbial community. Chemosphere 67: 2201-2209.   DOI   ScienceOn