Browse > Article
http://dx.doi.org/10.4014/jmb.1004.04048

Rheinheimera aquatica sp. nov., Antimicrobial Activity-Producing Bacterium Isolated from Freshwater Culture Pond  

Chen, Wen-Ming (Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University)
Lin, Chang-Yi (Laboratory of Microbiology, Department of Seafood Science, National Kaohsiung Marine University)
Young, Chiu-Chung (Department of Soil Environmental Science, College of Agriculture and Natural Resources, National Chung Hsing University)
Sheu, Shih-Yi (Department of Marine Biotechnology, National Kaohsiung Marine University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.10, 2010 , pp. 1386-1392 More about this Journal
Abstract
A bacterial strain designated GR5$^T$, previously isolated from a freshwater culture pond in Taiwan while screening for bacteria for antimicrobial compounds, was characterized using a polyphasic taxonomic approach. Strain GR5$^T$ was found to be Gram-negative, aerobic, greenish-yellow colored, rod-shaped, and motile by means of a single polar flagellum. Growth occurred at $10-40^{\circ}C$ (optimum, $35^{\circ}C$), pH 7.0-8.0 (optimum pH 8.0), and with 0-2.0% NaCl (optimum, 0.5-1.0%). The major fatty acids were $C_{16:1}{\omega}7c$(36.3%), $C_{16:0}$(16.6%), $C_{12:0}$ 3-OH (12.5%), and $C_{18:1}{\omega}7c$(9.1%). The major respiratory quinone was Q-8, and the DNA G+C content of the genomic DNA was 51.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strain GR5$^T$ belongs to the genus Rheinheimera, where its most closely related neighbors are Rheinheimera texasensis A62-14B$^T$ and Rheinheimera tangshanensis JA3-B52$^T$ with sequence similarities of 98.1% and 97.5%, respectively, and the sequence similarities to any other recognized species within Gammaproteobacteria are less than 96.5%. The mean level of DNA-DNA relatedness between strain GR5$^T$ and R. texasensis A62-14B$^T$, the strain most closely related to the isolate, was $26.5{\pm}7.6%$. Therefore, based on the phylogenetic and phenotypic data, strain GR5$^T$ should be classified as a novel species, for which the name Rheinheimera aquatica sp. nov. is proposed. The type strain is GR5$^T$ (=BCRC 80081$^T$=LMG 25379$^T$).
Keywords
Rheinheimera aquatica sp. nov.; antimicrobial activity; polyphasic taxonomy;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Chen, W. M., S. Laevens, T. M. Lee, T. Coenye, P. de Vos, M. Mergeay, and P. Vandamme. 2001. Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int. J. Syst. Evol. Microbiol. 51: 1729-1735.   DOI   ScienceOn
2 Zhang, X., L. Sun, F. Qiu, R. J. C. McLean, R. Jiang, and W. Song. 2008. Rheinheimera tangshanensis sp. nov., a rice rootassociated bacterium. Int. J. Syst. Evol. Microbiol. 58: 2420- 2424.   DOI   ScienceOn
3 Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, O. Kandler, M. I. Krichevsky, et al. 1987. International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464.   DOI
4 Yoon, J. H., S. E. Park, S. J. Kang, and T. K. Oh. 2007. Rheinheimera aquimaris sp. nov., isolated from seawater of the East Sea in Korea. Int. J. Syst. Evol. Microbiol. 57: 1386-1390.   DOI   ScienceOn
5 Romanenko, L. A., M. Uchino, E. Falsen, N. V. Zhukova, V. V. Mikhailov, and T. Uchimura. 2003. Rheinheimera pacifica sp. nov., a novel halotolerant bacterium isolated from deep sea water of the Pacific. Int. J. Syst. Evol. Microbiol. 53: 1973- 1977.   DOI   ScienceOn
6 Mesbah, M., U. Premachandran, and W. B. Whitman. 1989. Precise measurement of the G-C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159-167.   DOI
7 Nokhal, T. H. and H. G. Schlegel. 1983. Taxonomic study of Paracoccus denitrificans. Int. J. Syst. Bacteriol. 33: 26-37.   DOI
8 Powers, E. M. 1995. Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl. Environ. Microbiol. 61: 3756-3758.
9 Ryu, S. H., B. S. Chung, M. Park, S. S. Lee, S.-S. Lee, and C. O. Jeon. 2008. Rheinheimera soli sp. nov., a gammaproteobacterium isolated from soil in Korea. Int. J. Syst. Evol. Microbiol. 58: 2271-2274.   DOI   ScienceOn
10 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for constructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
11 Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI, Newark, DE, U.S.A.
12 Smibert, R. M. and N. R. Krieg. 1994. Phenotypic characterization, pp. 607-654. In P. Gerhardt, R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.). Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C.
13 Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849.   DOI   ScienceOn
14 Felsenstein, J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 17: 368-376.   DOI
15 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The Clustal_X Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
16 Cowan, S. T. and K. J. Steel. 1965. Manual for the Identification of Medical Bacteria. Cambridge University Press, London.
17 Ezaki, T., Y. Hashimoto, and E. Yabuuchi. 1989. Fluorometric DNA-DNA hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol. 39: 224-229.   DOI
18 Felsenstein, J. 1993. PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, U.S.A.
19 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41: 95-98.
20 Halpern, M., Y. Senderovich, and S. Snir. 2007. Rheinheimera chironomi sp. nov., isolated from a chironomid (Diptera; Chironomidae) egg mass. Int. J. Syst. Evol. Microbiol. 57: 1872-1875.   DOI   ScienceOn
21 Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University Press, Cambridge
22 Kluge, A. G. and F. S. Farris. 1969. Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1-32.   DOI   ScienceOn
23 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163.   DOI   ScienceOn
24 Maidak, B. L., J. R. Cole, T. G. Lilburn, C. T. Parker, P. R. Jr. Saxman, R. J. Farris, et al. 2001. The RDP-II (Ribosomal Database Project). Nucleic Acids Res. 29: 173-174.   DOI   ScienceOn
25 Chen, W. M., C. Y. Lin, and S. Y. Sheu. 2010. Investigating antimicrobial activity in Rheinheimera sp. due to hydrogen peroxide generated by L-lysine oxidase activity. Enzyme Microb. Technol. 46: 487-493.   DOI   ScienceOn
26 Merchant, M. M., A. K. Welsh, and R. J. C. McLean. 2007. Rheinheimera texasensis sp. nov., a halointolerant freshwater oligotroph. Int. J. Syst. Evol. Microbiol. 57: 2376-2380.   DOI   ScienceOn
27 Brettar, I., R. Christen, and M. G. Hofle. 2002. Rheinheimera baltica gen. nov., sp. nov., a blue-coloured bacterium isolated from the central Baltic Sea. Int. J. Syst. Evol. Microbiol. 52: 1851-1857.   DOI   ScienceOn
28 Brettar, I., R. Christen, and M. G. Höfle. 2006. Rheinheimera perlucida sp. nov., a marine bacterium of the Gammaproteobacteria isolated from surface water of the central Baltic Sea. Int. J. Syst. Evol. Microbiol. 56: 2177-2183.   DOI   ScienceOn
29 Chun, J., J.-H. Lee, Y. Jung, M. Kim, S. Kim, B. K. Kim, and Y. W. Lim. 2007. EzTaxon: A Web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int. J. Syst. Evol. Microbiol. 57: 2259-2261.   DOI   ScienceOn
30 Chung, Y. C., T. Kobayashi, H. Kanai, T. Akiba, and T. Kudo. 1995. Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococccus profundus DT5432. Appl. Environ. Microbiol. 61: 1502-1506.
31 Collins, M. D. 1985. Isoprenoid quinone analysis in classification and identification, pp. 267-287. In M. Goodfellow and D. E. Minnikin (eds.). Chemical Methods in Bacterial Systematics. Academic Press, London.