Browse > Article

Lipase Diversity in Glacier Soil Based on Analysis of Metagenomic DNA Fragments and Cell Culture  

Zhang, Yuhong (Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Shi, Pengjun (Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Liu, Wanli (Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University)
Meng, Kun (Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Bai, Yingguo (Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Wang, Guozeng (Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Zhan, Zhichun (SUNHY Group)
Yao, Bin (Key Laboratory of Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.9, 2009 , pp. 888-897 More about this Journal
Abstract
Lipase diversity in glacier soil was assessed by culture-independent metagenomic DNA fragment screening and confirmed by cell culture experiments. A set of degenerate PCR primers specific for lipases of the hormone-sensitive lipase family was designed based on conserved motifs and used to directly PCR amplify metagenomic DNA from glacier soil. These products were used to construct a lipase fragment clone library. Among the 300 clones sequenced for the analysis, 201 clones encoding partiallipases shared 51-82% identity to known lipases in GenBank. Based on a phylogenetic analysis, five divergent clusters were established, one of which may represent a previously unidentified lipase subfamily. In the culture study, 11 lipase-producing bacteria were selectively isolated and characterized by 16S rDNA sequences. Using the above-mentioned degenerate primers, seven lipase gene fragments were cloned, but not all of them could be accounted for by the clones in the library. Two full-length lipase genes obtained by TAIL-PCR were expressed in Pichia pastoris and characterized. Both were authentic lipases with optimum temperatures of ${\le}40^{\circ}C$. Our study indicates the abundant lipase diversity in glacier soil as well as the feasibility of sequence-based screening in discovering new lipase genes from complex environmental samples.
Keywords
Lipase; gene diversity; metagenomic library; sequence-based screening; glacier soil;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Altschul, S. F., T. L. Madden, A. A. Schaffeer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI   ScienceOn
2 Feller, G., M. Thiry, and C. Gerday. 1991. Nucleotide sequence of the lipase gene lip2 from the Antarctic psychrotroph Moraxella TA144 and site-specific mutagenesis of the conserved serine and histidine residues. DNA Cell Biol. 10: 381-388   DOI   ScienceOn
3 Holm, C., T. G. Kirchgessner, K. L. Svenson, G. Fredrikson, S. Nilsson, C. G. Miller, et al. 1988. Hormone-sensitive lipase: Sequence, expression, and chromosomal localization to 19 centq13.3. Science 241: 1503-1506   DOI   PUBMED   ScienceOn
4 Hugenholtz, P. and N. R. Pace. 1996. Identifying microbial diversity in the natural environment: A molecular phylogenetic approach. Trends Biotechnol. 14: 190-197   DOI   ScienceOn
5 Langin, D., H. Laurell, L. S. Holst, P. Belfrage, and C. Holm. 1993. Gene organization and primary structure of human hormone sensitive lipase: Possible significance of a sequence homology with a lipase of Moraxella TA144, an Antarctic bacterium. Proc. Natl. Acad. Sci. U.S.A. 90: 4897-4901   DOI   ScienceOn
6 Wheeler, D. L., D. M. Church, S. Federhen, A. E. Lash, T. L. Madden, J. U. Pontius, et al. 2003. Database resources of the National Center for Biotechnology. Nucleic Acids Res. 31: 28- 33   DOI   ScienceOn
7 Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169   PUBMED   ScienceOn
8 Lee, S. W., K. Won, H. K. Lim, J. C. Kim, G. J. Choi, and K. Y. Cho. 2004. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl. Microbiol. Biotech. 65: 720-726   DOI   ScienceOn
9 Piraee, M. and L. C. Vining. 2002. Use of degenerate primers and touchdown PCR to amplify a halogenase gene fragment from Streptomyces venezuelae ISP5230. J. Ind. Microbiol. Biotech. 29: 1-5   DOI   ScienceOn
10 Alquati, C., L. De Gioia, G. Santarossa, L. Alberghina, P. Fantucci, and M. Lotti. 2002. The cold-active lipase of Pseudomonas fragi, heterologous expression, biochemical characterization and molecular modeling. Eur. J. Biochem. 269: 3321-3328   DOI   ScienceOn
11 Christner, B. C., E. M. Thompson, L. G. Thompson, V. Zagorodnov, K. Sandman, and J. N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144: 479-485   DOI   ScienceOn
12 Parra, L. P., F. Reyes, J. P. Acevedo, O. Salazar, B. A. Andrews, and J. A. Asenjo. 2008. Cloning and fusion expression of a cold-active lipase from marine Antarctic origin. Enzyme Microb. Tech. 42: 371-377   DOI   ScienceOn
13 Park, J. M., N. S. Han, and T. J. Kim. 2007. Rapid detection and isolation of known and putative $alpha-L-Arabinofuranosidase$ genes using degenerate PCR primers. J. Microbiol. Biotechnol. 17: 481-489   PUBMED   ScienceOn
14 Winkler, U. K. and M. Stuckmann. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663-670   PUBMED
15 Haba, E., O. Bresco, C. Ferrer, A. Marques, M. Busquets, and A. Manresa. 2000. Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme Microb. Tech. 26: 40-44   DOI   ScienceOn
16 Hardeman, F. and S. Sjoling. 2007. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. Ecol. 59: 524-534   DOI   ScienceOn
17 Zhu, F., S. Wang, and P. Zhou. 2003. Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int. J. Syst. Evol. Microbiol. 53: 853-857   DOI   ScienceOn
18 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163   DOI   ScienceOn
19 Jaeger, K. E. and M. T. Reetz. 1998. Microbial lipases form versatile tools for biotechnology. Trends Biotechnol. 16: 396- 403   DOI   ScienceOn
20 Choo, D. W., T. Kurihara, T. Suzuki, K. Soda, and N. Esaki. 1998. A cold-adapted lipase of an Alaskan psychrotroph, Pseudomonas sp. strain B11-1: Gene cloning and enzyme purification and characterization. Appl. Environ. Microbiol. 64: 486-491   ScienceOn
21 Voget, S., C. Leggewie, A. Uesbeck, C. Raasch, K. E. Jaeger, and W. R. Streit. 2003. Prospecting for novel biocatalysts in a soil metagenome. Appl. Environ. Microbiol. 69: 6235-6242   DOI   ScienceOn
22 Lammle, K., H. Zipper, M. Breuer, B. Hauer, C. Buta, H. Brunner, and S. Rupp. 2007. Identification of novel enzymes with different hydrolytic activities by metagenome expression cloning. J. Biotechnol. 127: 575-592   DOI   ScienceOn
23 Brady, S. F. 2007. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat. Protoc. 2: 1297-1305   DOI   PUBMED   ScienceOn
24 Liu, Y. G. and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681   DOI   ScienceOn
25 Gabor, E. M., W. B. Alkema, and D. B. Janssen. 2004. Quantifying the accessibility of the metagenome by random expression cloning techniques. Environ. Microbiol. 6: 879-886   DOI   ScienceOn
26 Loftus, B. J., E. Fung, P. Roncaglia, D. Rowley, P. Amedeo, and D. Bruno. 2005. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science 307: 1321- 1324   DOI   PUBMED   ScienceOn
27 Jaeger, K. E., B. W. Dijkstra, and M. T. Reetz. 1999. Bacterial biocatalysts: Molecular biology, three-dimensional structures and biotechnological applications of lipases. Annu. Rev. Microbiol. 53: 315-351   DOI   ScienceOn
28 Jaeger, K. E., S. Ransacb, B. W. Dijkstra, C. Colson, M. v. Heuvel, and O. Misset. 1994. Bacterial lipases. FEMS Microbiol. Rev. 15: 29-63   DOI   ScienceOn
29 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NewYork
30 Kim, H. K., Y. J. Jung, W. C. Choi, H. S. Ryu, T. K. Oh, and J. K. Lee. 2004. Sequence-based approach to finding functional lipases from microbial genome databases. FEMS Microbiol. Lett. 235: 349-355   DOI   PUBMED   ScienceOn
31 Schmeisser, C., H. Steele, and W. R. Streit. 2007. Metagenomics, biotechnology with non-culturable microbes. Appl. Microbiol. Biotech. 75: 955-962   DOI   ScienceOn
32 Arpigny, J. L. and K. E. Jaeger. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177-183   DOI   ScienceOn
33 Jaeger, K. E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotech. 13: 390-397   DOI   ScienceOn
34 Pel, H. J., J. H. Winde, D. B. Archer, P. S. Dyer, G. Hofmann, and P. J. Schaap. 2007. Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat. Biotechnol. 25: 221-231   DOI   ScienceOn
35 Iizumi, T., K. Nakamura, Y. Shimada, A. Sugihara, Y. Tominaga, and T. Fukase. 1991. Cloning, nucleotide sequencing, and expression in Escherichia coli of a lipase and its activator genes from Pseudomonas sp. KWI-56. Agric. Biol. Chem. 55: 2349- 2357   DOI   ScienceOn
36 Bell, P. J. L., A. Sunna, M. D. Gibbs, N. C. Curach, H. Nevalainen, and P. L. Bergquist. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283-2291   PUBMED   ScienceOn
37 Hasan, F., A. A. Shah, and A. Hameed. 2006. Industrial applications of microbial lipases. Enzyme Microb. Tech. 39: 235-251   DOI   ScienceOn
38 Henne, A., R. A. Schmitz, M. Bomeke, G. Gottschalk, and R. Daniel. 2000. Screening of environmental DNA libraries for the presence of genes conferring lipolytic activity on Escherichia coli. Appl. Environ. Microbiol. 66: 3113-3116   DOI   ScienceOn