Browse > Article
http://dx.doi.org/10.4014/jmb.0809.514

Pretreatment on Corn Stover with Low Concentration of Formic Acid  

Xu, Jian (Biosystems Department, National Laboratory for Sustainable Energy)
Thomsen, Mette Hedegaard (Biosystems Department, National Laboratory for Sustainable Energy)
Thomsen, Anne Belinda (Biosystems Department, National Laboratory for Sustainable Energy)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.8, 2009 , pp. 845-850 More about this Journal
Abstract
Bioethanol derived from lignocellulosic biomass has the potential to replace gasoline. Cellulose is naturally recalcitrant to enzymatic attack, and it also surrounded by the matrix of xylan and lignin, which enhances the recalcitrance. Therefore, lignocellulosic materials must be pretreated to make the cellulose easily degraded into sugars and further fermented to ethanol. In this work, hydrothermal pretreatment on corn stover at $195^{\circ}C$ for 15 min with and without lower concentration of formic acid was compared in terms of sugar recoveries and ethanol fermentation. For pretreatment with formic acid, the overall glucan recovery was 89% and pretreatment without formic acid yielded the recovery of 94%. Compared with glucan, xylan was more sensitive to the pretreatment condition. The lowest xylan recovery of 55% was obtained after pretreatment with formic acid and the highest of 75% found following pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical was observed from corn stover pretreated at $195^{\circ}C$ for 15 min with formic acid.
Keywords
Corn stover; formic acid; pretreatment; glucan recovery; fermentability; simultaneous saccharification and fermentation (SSF);
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Baeza, J., S. Urizar, N. Erismann, J. Freer, E. Schmidt, and N. Duran. 1991. Organosolv pulping - V: Formic acid delignification of Eucalyptus globulus and Eucalyptus grandis. Bioresource Technol. 37: 1-6   DOI   ScienceOn
2 Beery, K., R. Hendrickson, M. Brewer, N. Mosier, B. Dien, R. Dreschel, G. Welch, R. Bothast, and M. R. Ladisch. 2000. Incremental ethanol yields from processing corn fiber by thermal pretreatment and enzymatic hydrolysis. BTEC Paper 46, 219th National Meeting of the American Chemical Society, San Francisco, CA, Biotechnology Secretariat (BTEC), Biobased Processing to Chemicals V: Process Engineering Biochem. Biotechnol. 70/72: 99-111
3 Brigham, J. S., W. S. Adney, and M. E. Himmel. 1996. Hemicellulases: Diversity and applications, pp. 119-141. In C. E. Wyman (ed.), Handbook on Bioethanol: Production and Utilization. Taylor & Francis, Washington, DC
4 Dap$\acute{i}$a, S., V. Santos, and J. C. Parajo. 2002. Study of formic acid as an agent for biomass fractionation. Biomass Bioenergy 22: 213-221   DOI   ScienceOn
5 Greil, P. 2001. Biomorphous ceramics from lignocellulosics. J. Eur. Ceram. Soc. 21: 105-118   DOI   ScienceOn
6 Hansen, A. C., Q. Zhang, and P. W. L Lyne. 2005. Ethanoldiesel fuel blends: A review. Bioresource Technol. 96: 277-393   DOI   ScienceOn
7 Ohgren, K., R. Bura, J. Saddler, and G. Zacchi. 2007. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresource Technol. 98: 2503- 2510   DOI   ScienceOn
8 Peter, V., G. Walsum, and H. Shi. 2004. Carbonic acid enhancement of hydrolysis in aqueous pretreatment of corn stover. Bioresource Technol. 93: 217-226   DOI   ScienceOn
9 Ruggiero, R., E. H. Machado, D. da Silva, S. Greler, A. Nourmamode, and A. Castellan. 1998. Bleached chemical pulp from Eucalyptus grandis wood produced by peroxyformic acid pulping and photochemical bleaching. Holzforsch 52: 325-332   DOI   ScienceOn
10 Wyman, C. E. 1994. Ethanol from lignocellulosic biomass: Technology, economics, and opportunities. Bioresource Technol. 50: 3-16   DOI   ScienceOn
11 Cantarella, M., L. Cantarella, A. Gallifuoco, A. Spera, and F. Alfani. 2004. Effect of inhibitors released during steamexplosion treatment of poplar wood on subsequent enzymatic hydrolysis and SSF. Biotechnol. Prog. 20: 200-206   DOI   ScienceOn
12 Kadam, K. L. and J. D. Mcmillan. 2003. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresource Technol. 88: 17-25   DOI   ScienceOn
13 Ohgren, K., A. Rudolf, M. Galbe, and G. Zacchi. 2006. Fuel ethanol production from steam-pretreated corn stover using SSF at higher dry matter content. Biomass Bioenergy 30: 863- 869   DOI   ScienceOn
14 Kim, T. H., J. S. Kim, C. Sunwoo, and Y. Y. Lee. 2003. Pretreatment of corn stover by aqueous ammonia. Bioresource Technol. 90: 39-47   DOI   ScienceOn
15 Ohgren, K., J. Vehmaanpera, M. Siika-aho, M. Galbe, L. Viikari, and G. Zacchi. 2007. High temperature enzymatic prehydrolysis prior to simultaneous saccharification and fermentation of steam pretreated corn stover for ethanol production. Enzyme Microb. Technol. 40: 607-613   DOI   ScienceOn
16 Bjerre, A. B. and E. Sorensen. 1992. Thermal decomposition of dilute aqueous formic acid solutions. Ind. Eng. Chem. Res. 31: 574-577   DOI
17 Ohgren, K., R. Bura, G. Lesnickic, J. Saddlerb, and G. Zacchi. 2007. A comparison between simultaneous saccharification and fermentation and separate hydrolysis and fermentation using steam-pretreated corn stover. Process Biochem. 42: 834-839   DOI   ScienceOn
18 Goering, H. K. and P. J. Van Soest. 1970. Forage fiber analysis apparatus, reagents, procedures and some applications. In: Agriculture Handbook No. 379. Agriculture Research Service, United States Department of Agriculture, Washington, U.S.A
19 Kim, T. H. and Y. Y. Lee. 2005. Pretreatment and fractionation of corn stover by ammonia recycle percolation process. Bioresource Technol. 96: 2007-2013   DOI   ScienceOn
20 Saddler, J. N., L. Ramos, and C. Breul. 1993. Steam pretreatment of ignocellulosic residues, pp. 73-91. In J. N. Saddler (ed.), Bioconversion of Forest and Agricultural Residues. CAB International, Wallingford
21 Mosier, N., R. Hendrickson, M. Ho-N-Sedlak, and M. R. Ladisch. 2005. Optimization of pH controlled liquid hot water pretreatment of corn stover. Bioresource Technol. 96: 1986- 1993   DOI   ScienceOn
22 Torget, R., P. Werdene, M. Himmel, and K. Grohmann. 1990. Dilute acid pretreatment of short rotation woody and herbaceous crops. Appl. Biochem. Biotechnol. 24/25: 115-126   DOI   ScienceOn
23 Weil, J. R., M. Brewer, R. Hendrickson, A. Sarikaya, and M. R. Ladisch. 1998. Continuous pH monitoring during pretreatment of yellow poplar wood sawdust by pressure cooking in water. Appl. Biochem. Biotechnol. 70/72: 99-111   DOI   ScienceOn
24 Ranatunga, T. D., J. Jervis, R. F. Helm, J. D. McMillan, and R. J. Wooley. 2000. The effect of overliming on the toxicity of dilute acid pretreated lignocellulosics: The role of inorganics, uronic acids and ether-soluble organics. Enzyme Microb. Technol. 27: 240-247   DOI   ScienceOn
25 Xu, F., C. F. Liu, Z. C. Geng, J. X. Sun, R. C. Sun, B. H. Hei, L. Lin, S. B. Wu, and J. Je. 2006. Characterisation of degraded organosolv hemicelluloses from wheat straw. Polym. Degrad. Stab. 91: 1880-1886   DOI   ScienceOn
26 Kim, T. H. and Y. Y. Lee. 2006. Fractionation of corn stover by hot-water and aqueous ammonia treatment. Bioresource Technol. 97: 224-232   DOI   ScienceOn
27 Nguyen, Q. A. 1993. Economic analyses of integrating a biomassto- ethanol plant into a pulp/saw mill, pp. 321-340. In J. N. Saddler (ed.), Bioconversion of Forest and Agricultural Residues. CAB International, Wallingford
28 Saddler, J. N. 1993. Introduction, Biotechnology in Agriculture No. 9. CABI, U.K. pp. 1-11
29 Poppius, K., J. Sundquist, and I. Wartiovaara. 1989. pp. 87-92. In J. F. Kennedy, G. O. Phillips, and P. A. Williams (eds.), Wood Processing and Utilization. Ellis Horwood, New York
30 Sundquist, J. 1996. Summary of Milox research. Pap. Puu. 78: 92-95
31 Chang, S. and M. Holtzapple. 2000. Fundamental factors affecting biomass enzymatic reactivity. Appl. Biochem. Biotechnol. 84: 5-37   DOI   ScienceOn
32 Lloyd, T. A. and C. E. Wyman. 2005. Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technol. 96: 1967-1977   DOI   ScienceOn
33 Klinke, H., A. H. Thomsen, and B. K. Ahring. 2004. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl. Microbiol. Biotechnol. 66: 10-26   DOI   ScienceOn
34 Ladisch, M. R., K. Kohlmann, P. Westgate, J. Weil, and Y. Yang. 1998. Processes for treating cellulosic material. U.S. Patent 5,846,787
35 Sheehan, J. and M. Himmel. 1999. Enzymes, energy, and the environment: A strategic perspective on the U.S. Department of Energy's Research and Development Activities for Bioethanol. Biotechnol. Prog. 15: 817-827   DOI   ScienceOn
36 Linde, M., E. L. Jakobsson, M. Galbe, and G. Zacchi. 2008. Steam pretreatment of dilute $H_2SO_4$-impregnated wheat straw and SSF with low yeast and enzyme loadings for bioethanol production. Biomass Bioenergy 32: 326-332   DOI   ScienceOn
37 McMillan, J. D. 1994. Pretreatment of lignocellulosic biomass, pp. 292-324. In M. E. Himmel, J. O. Baker, and R. P. Overend (eds.), Enzymatic Conversion of Biomass for Fuels Production. American Chemical Society, Washington, DC
38 Chum, H. L. and R. P. Overend. 2001. Biomass and renewable fuel. Fuel Process Technol. 71: 187-195   DOI   ScienceOn