Browse > Article
http://dx.doi.org/10.4014/jmb.0809.511

Microbial Community Structure in Hexadecane- and Naphthalene-Enriched Gas Station Soil  

Baek, Kyung-Hwa (Environmental Biotechnology Research Center, KRIBB)
Kim, Hee-Sik (Environmental Biotechnology Research Center, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.7, 2009 , pp. 651-657 More about this Journal
Abstract
Shifts in the activity and diversity of microbes involved in aliphatic and aromatic hydrocarbon degradation in contaminated soil were investigated. Subsurface soil was collected from a gas station that had been abandoned since 1995 owing to ground subsidence. The total petroleum hydrocarbon content of the sample was approximately 2,100 mg/kg, and that of the soil below a gas pump was over 23,000 mg/kg. Enrichment cultures were grown in mineral medium that contained hexadecane (H) or naphthalene (N) at a concentration of 200 mg/l. In the Henrichment culture, a real-time PCR assay revealed that the 16S rRNA gene copy number increased from $1.2{\times}10^5$to $8.6{\times}10^6$with no lag phase, representing an approximately 70-fold increase. In the N-enrichment culture, the 16S rRNA copy number increased about 13-fold after 48 h, from $6.3{\times}10^4$to $8.3{\times}10^5$. Microbial communities in the enrichment cultures were studied by denaturing gradient gel electrophoresis and by analysis of 16S rRNA gene libraries. Before the addition of hydrocarbons, the gas station soil contained primarily Alpha- and Gammaproteobacteria. During growth in the H-enrichment culture, the contribution of Bacteriodetes to the microbial community increased significantly. On the other hand, during N-enrichment, the Betaproteobacteria population increased conspicuously. These results suggest that specific phylotypes of bacteria were associated with the degradation of each hydrocarbon.
Keywords
Denaturing gradient gel electrophoresis; gas station; hexadecane; microbial community; naphthalene;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cheung, P. and B. K. Kinkle. 2001. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl. Environ. Microbiol. 67: 2222-2229   DOI   ScienceOn
2 Dionisi, H. M., C. S. Chewning, K. H. Morgan, F. Menn, J. P. Easter, and G. S. Sayler. 2004. Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl. Environ. Microbiol. 70: 3988-3995   DOI   ScienceOn
3 Kang, H., S. Y. Hwang, E. Kim, Y. S. Kim, S. K. Kim, S. W. Kim, C. E. Cerniglia, K. L. Shuttleworth, and G. J. Zylstra. 2003. Degradation of phenanthrene and naphthalene by a Burkholderia species. Can. J. Microbiol. 49: 139-144   DOI   ScienceOn
4 Kaplan, C. W. and C. L. Kitts. 2004. Bacterial succession in a petroleum land treatment unit. Appl. Environ. Microbiol. 70: 1777-1786   DOI   ScienceOn
5 Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59: 695-700   PUBMED   ScienceOn
6 Smith, J. M., S. J. Green, C. A. Kelly, L. Prufert-Bebout, and B. M. Bebout. 2008. Shifts in methanogen community structure and function associated with long-term manipulation of sulfate and salinity in a hypersaline microbial mat. Environ. Microbiol. 10: 386-394   DOI   ScienceOn
7 Vinas, M., J. Sabate, M. H. Espuny, and A. M. Solanas. 2005. Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl. Environ. Microbiol. 71: 7008-7018   DOI   ScienceOn
8 Watanabe, K., H. Furamata, and S. Harayama. 2002. Understanding the diversity in catabolic potential of microorganism for the development of bioremediation strategies. Antonie. Van Leeuwenhoek. 81: 655-663   DOI   ScienceOn
9 Zylstra, G. J. and E. Kim. 1997. Aromatic hydrocarbon degradation by Sphingomonas yanoikuyae B1. J. Ind. Microbiol. Biotech. 19: 408-414   DOI   ScienceOn
10 Popp, N., M. Schlomann, and M. Mau. 2006. Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152: 3291-3304   DOI   ScienceOn
11 Shannon, C. E. and W. Weaver. 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana, IL
12 Evans, F. F., A. S. Rosado, G. V. Sebastian, R. C. Casella, P. Machado, C. Holmstrom, S. Kjelleberg, J. D. Elsas, and L. Seldin. 2004. Impact of oil contamination and biostimulation on the diversity of indigenous bacterial communities in soil microcosms. FEMS Microbiol. Ecol. 49: 295-305   DOI   ScienceOn
13 MacNaughton, S. J., J. R. Stephen, A. D. Venosa, G. A. Davis, Y. J. Chang, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566-3574   PUBMED   ScienceOn
14 Roling, W. F., M. G. Milner, M. Jones, K. Lee, F. Daniel, R. J. P. Swannell, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537-5548   DOI   ScienceOn
15 Bordenave, S., M. S. Goni-Urriza, P. Caumette, and R. Duran. 2007. Effects of heavy fuel oil on the bacterial community structure of a pristine microbial mat. Appl. Environ. Microbiol. 73: 6089-6097   DOI   ScienceOn
16 Simpson, E. H. 1949. Measurement of diversity. Nature 163: 688   DOI
17 Whyte, L. G., L. Bourbonniere, and C. W. Greer. 1997. Biodegradation of petroleum hydrocarbons by psychrotrophic Pseudomonas strains possessing both alkane (alk) and naphthalene (nah) catabolic pathways. Appl. Environ. Microbiol. 63: 3719-3723   PUBMED   ScienceOn
18 Ringerlberg, D. B., J. W. Talley, E. J. Perkins, S. G. Tucker, R. G. Luthy, E. J. Bouwer, and H. L. Fredrickson. 2001. Succession of phenotypic, genotypic and metabolic community characteristics during in vitro bioslurry treatment of polycyclic aromatic hydrocarbon-contaminated sediments. Appl. Environ. Microbiol. 67: 1542-1550   DOI   ScienceOn
19 Margesin, R., D. Labbe, F. Shinner, C. W. Greer, and L. G. Whyte. 2003. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085-3092   DOI   ScienceOn
20 Watts, J. E., Q. Wu, S. B. Schreier, H. D. May, and K. R. Sowers. 2001. Comparative analysis of polychlorinated biphenyldechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ. Microbiol. 3: 710-719   DOI   ScienceOn
21 Riser-Roberts, E. 1992. Bioremediation of Petroleum Contaminated Sites, pp. 35-57. CRC Press, New York
22 Baek, K. H., B. D. Yoon, B. H. Kim, D. H. Cho, I. S. Lee, H. M. Oh, and H. S. Kim. 2007. Monitoring of microbial diversity and activity during bioremediation of crude oil-contaminated soil with different treatments. J. Microbiol. Biotechnol. 17: 67-73   PUBMED   ScienceOn
23 Stackebrandt, E. and W. Liesack. 1993. Nucleic acids and classification, pp. 152-189. In M. Goodfellow and A. G. O'Donnell(eds.), Handbook of New Bacterial Systematics. Academic Press, London
24 Ogino, A., H. Koshikawa, T. Nakahara, and H. Uchiyama. 2001. Succession of microbial communities during a biostimulation process as evaluated by DGGE and clone library analyses. J. Appl. Microbiol. 91: 625-635   DOI   ScienceOn