Browse > Article
http://dx.doi.org/10.4014/jmb.0807.423

Monitoring Bacterial Population Dynamics Using Real-Time PCR During the Bioremediation of Crude-Oil-Contaminated Soil  

Baek, Kyung-Hwa (Environmental Biotechnology Research Center, KRIBB)
Yoon, Byung-Dae (Environmental Biotechnology Research Center, KRIBB)
Cho, Dae-Hyun (Environmental Biotechnology Research Center, KRIBB)
Kim, Byung-Hyuk (Environmental Biotechnology Research Center, KRIBB)
Oh, Hee-Mock (Environmental Biotechnology Research Center, KRIBB)
Kim, Hee-Sik (Environmental Biotechnology Research Center, KRIBB)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.4, 2009 , pp. 339-345 More about this Journal
Abstract
We evaluated the activity and abundance of the crude-oil-degrading bacterium Nocardia sp. H17-1 during bioremediation of oil-contaminated soil, using real-time PCR. The total petroleum hydrocarbon(TPH) degradation rate constants(k) of the soils treated with and without H17-1 were $0.103\;d^{-1}$ and $0.028\;d^{-1}$ respectively. The degradation rate constant was 3.6 times higher in the soil with H17-1 than in the soil without H17-1. In order to detect and quantify the Nocardia sp. H17-1 in soil samples, we quantified the genes encoding 16S ribosomal RNA(16S rRNA), alkane monooxygenase(alkB4), and catechol 2,3-dioxygenase(23CAT) with real-time PCR using SYBR green. The amounts of H17-1 16S rRNA and alkB4 detected increased rapidly up to 1,000-folds for the first 10 days, and then continued to increase only slightly or leveled off. However, the abundance of the 23CAT gene detected in H17-1-treated soil, where H17-1 had neither the 23CAT gene for the degradation of aromatic hydrocarbons nor the catechol 2,3-dioxygenase activity, did not differ significantly from that of the untreated soil($\alpha$=0.05,p>0.22). These results indicated that H17-1 is a potential candidate for the bioaugmentation of alkane-contaminated soil. Overall, we evaluated the abundance and metabolic activity of the bioremediation strain H17-1 using real-time PCR, independent of cultivation.
Keywords
Bioaugmentation; crude oil; Nocardia sp.; real-time PCR; total petroleum hydrocarbon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Baldwin, B., C. H. Nakatsu, and L. Nies. 2003. Detection and enumeration of aromatic oxygenase genes by multiplex and realtime PCR. Appl. Environ. Microbiol. 69: 3350-3358   DOI   ScienceOn
2 Widada, J., H. Nojiri, and T. Omori. 2002. Recent developments in molecular techniques for identification and monitoring of xenobioticdegrading bacteria and their catabolic genes in bioremediation. Appl. Microbiol. Environ. 60: 45-59
3 Zhang, T. and H. H. P. Fang. 2006. Amplification of real-time polymerase chain reaction for quantification of microorganisms in environmental samples. Appl. Microbiol. Biotechnol. 70: 281-289   DOI   ScienceOn
4 Layton, A. C., H. M. Dionisi, H. W. Kuo, K. G. Robinson, V. M. Garrett, A. Meyers, and G. S. Salyer. 2005. Emergence of competitive dominant ammonia-oxidizing bacterial populations in a full-scale industrial wastewater treatment plant. Appl. Environ. Microbiol. 71: 1105-1108   DOI   ScienceOn
5 Smith, C. J., D. B. Nedwell, L. F. Dong, and A. M. Osborn. 1999. Molecular screening for alkane hydroxylase genes in Gram-negative and Gram-positive strains. Environ. Microbiol. 1: 307-317   DOI   ScienceOn
6 Goldstein, R. M., L. M. Mallory, and M. Alexander. 1985. Reasons for possible failure of inoculation to enhance biodegradation. Appl. Environ. Microbiol. 50: 977-983
7 Heiss-Blanquet, S., Y. Benoit, C. Marechaux, and F. Monot. 2005. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J. Appl. Microbiol. 99: 1392-1403   DOI   ScienceOn
8 Fantrossi, S. E. and S. Agathos. 2005. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr. Opin. Microbiol. 8: 268-275   DOI   ScienceOn
9 Andreoni, V., S. Bernasconi, M. Colombo, J. B. van Beilen, and L. Cavalca. 2000. Detection of genes for alkane and naphthalene catabolism in Rhodococcus sp. strain 1BN. Environ. Microbiol. 2: 572-577   DOI   ScienceOn
10 Lopez-Gutierrez, J. C., S. Henry, S. Hallet, F. Martin-Laurent, G. Catroux, and L. Philippot. 2004. Quantification of a novel group of nitrate-reducing bacteria in environment by real-time PCR. J. Microbiol. Methods 57: 399-407   DOI   ScienceOn
11 Powell, S. M., S. H. Ferguson, J. P. Bowman, and I. Snape. 2006. Using real-time PCR to assess changes in the hydrocarbondegrading microbial community in the Antarctic soil during bioremediation. Microb. Ecol. 52: 523-532   DOI   ScienceOn
12 Watanabe, K. and N. Hamamura. 2003. Molecular and physiological approaches to understand of the ecology of pollutant degradation. Curr. Opin. Biotechnol. 14: 289-295   DOI   ScienceOn
13 Nerella, S., A. L. Wright, and R. W. Weaver. 1995. Microbial inoculants and fertilization for bioremediation of oil in wetlands, pp. 31-38. In R. E. Hinchee, J. Fredrickson, and B. C. Alleman, (eds). Bioaugmentation for Site Remediation Battelle Press, Columbus, OH
14 Debruyn, J. M., C. S. Chewning, and G. S. Sayler. 2007. Comparative quantitiative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ. Sci. Technol. 41: 5426-5432   DOI   ScienceOn
15 Stapleton, R. D., G. S. Sayler, J. K. Boggs, E. L. Libelo, T. Stauffer, and W. G.. Macintyre. 2000. Changes in subsurface catabolic gene frequencies during natural attenuation of petroleum hydrocarbons. Environ. Sci. Technol. 34: 1991-1999   DOI   ScienceOn
16 Aamand, J. G., G. Bruntse, M. Jepsen, C. Jorgensen, and B. K. Jensen. 1995. Degradation of PAHs in soil by indigenous and inoculated bacteria, pp. 121-127. In R. E. Hinchee, J. Fredrickson, and B. C. Alleman (eds). Bioaugmentation for Site Remediation Battelle Press, Columbus, OH
17 Harms, G., A. C. Layton, H. M. Dionisi, I. R. Gregory, V. M. Garrett, S. A. Hawkins, K. G. Robinson, and G. S. Sayler. 2003. Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ. Sci. Technol. 37: 343-351   DOI   ScienceOn
18 Laurie, A. D. and G. Lloyd-Jones. 2000. Quantification of phnAc and nahAc in contaminated New Zealand soils by competitive PCR. Appl. Environ. Microbiol. 66: 1814-1817   DOI   ScienceOn
19 Beller, H. R., S. T. Kane, T. C. Legler, and P. J. Alvarez. 2002. A real-time polymerase chain reaction method for monitoring anaerobic hydrocarbon-degrading bacteria based on a catabolic gene. Environ. Sci. Technol. 36: 3977-3984   DOI   ScienceOn
20 Dionisi, H. M., C. S. Chewning, K. H. Morgan, F. Menn, J. P. Easter, and G. S. Sayler. 2004. Abundance of dioxygenase genes similar to Ralstonia sp. strain U2 nagAc is correlated with naphthalene concentrations in coal tar-contaminated freshwater sediments. Appl. Environ. Microbiol. 70: 3988-3995   DOI   ScienceOn
21 Nyssonen, M., R. Piskonen, and M. Itavaara. 2006. A targeted realtime PCR assay for studying naphthalene degradation in the environment. Microb. Ecol. 52: 533-543   DOI   ScienceOn
22 Mesarch, M. B., C. H. Nakatsu, L. Nies. 2000. Development of catechol 2,3-dioxygenase-specific primers for monitoring bioremediation by competitive quantitative PCR. Appl. Environ. Microbiol. 66: 678-683
23 Baek, K. H., Y. K. Lee, I. S. Lee, H. M. Oh, B. D. Yoon, and H. S. Kim. 2004. Detection of Nocardia sp. H17-1 by PCR during bioremediation of crude oil-contaminated soil. Kor. J. Microbiol. Biotechnol. 32: 91-95
24 Baek, K. H., B. D. Yoon, I. S. Lee, H. M. Oh, and H. S. Kim. 2006. Biodegradation of aliphatic and aromatic hydrocarbons by Nocardia sp. H17-1. Geomicrobiol. J. 23: 253-259   DOI   ScienceOn
25 Sharkey, F. H., I. M. Banat, and R. Marchant. 2004. Detection and quantification of gene expression in environmental bacteriology. Appl. Environ. Microbiol. 70: 3795-3806   DOI   ScienceOn
26 Baek, K.-H., H.-S. Kim, S.-H. Moon, I.-S. Lee, H.-M. Oh, and B.-D. Yoon. 2004. Effects of soil types on the biodegradation of crude oil by Nocardia sp. H17-1. J. Microbiol. Biotechnol. 14: 901-905