Browse > Article
http://dx.doi.org/10.4014/jmb.0904.04002

Enrichment of Hydrogenotrophic Methanogens in Coupling with Methane Production Using Electrochemical Bioreactor  

Jeon, Bo-Young (Department of Biological Engineering, Seokyeong University)
Kim, Sung-Yong (Department of Biological Engineering, Seokyeong University)
Park, Yong-Keun (College of Life Science and Biotechnology, Korea University)
Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.12, 2009 , pp. 1665-1671 More about this Journal
Abstract
Anaerobic digestion sludge was cultivated in an electrochemical bioreactor (ECB) to enrich the hydrogenotrophic methanogens. A modified graphite felt cathode with neutral red (NR-cathode) was charged with electrochemical reducing power generated from a solar cell. The methane and carbon dioxide collected in a Teflon bag from the ECB were more than 80 ml/l of reactant/day and less than 20 ml/l of reactant/day, respectively, whereas the methane and carbon dioxide collected from a conventional bioreactor (CB) was around 40 ml/l of reactant/day, respectively. Moreover, the maximal volume ratios of methane to carbon dioxide (M/C ratio) collected in the Teflon bag from the ECB and CB were 7 and 1, respectively. The most predominant methanogens isolated from the CB on the $20^{th}$, $80^{th}$, and $150^{th}$ days of incubation were hydrogenotrophs. The methanogenic diversity analyzed by temperature gradient gel electrophoresis (TGGE) of the 16S rDNA variable region was higher in the ECB than in the CB. The DNA extracted from the TGGE bands was more than 95% homologous with hydrogenotrophic methanogens in the ECB, but was an aceticlastic methanogen in the CB. In conclusion, the ECB was demonstrated as a useful system for enriching hydrogenotrophic methanogens and increasing the M/C ratio of the gas product.
Keywords
Electrochemical bioreactor; TGGE; hydrogenotrophic methanogen; syntrophism; solar energy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Barredo, M. S. and L. M. Evison. 1991. Effect of propionate toxicity on methanogen-enriched sludge Methanobrevibacter smithii, and Methanospirillum hungatii at different pH values. Appl. Environ. Microbiol. 57: 1764-1769   PUBMED   ScienceOn
2 Ferry, J. G. 1992. Methane from acetate. J. Bacteriol. 174: 5489-5495   PUBMED
3 Hendrickson, E. L., R. Kaul, Y. Zhou, D. Bovee, P. Chapman, J. Chung, et al. 2004. Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J. Bacteriol. 186: 6956-6968   DOI   ScienceOn
4 Hutchins, S. R., M. B. Tomson, J. T. Wilson, and C. H. Ward. 1987. Anaerobic inhibition of trace organic compound removal during rapid infiltration of wastewater. Appl. Environ. Microbiol. 48: 1046-1048   ScienceOn
5 Lovley, D. R. and J. J Klug. 1982. Intermediary metabolism of organic matter in the sediments of a eutrophic lake. Appl. Environ. Microbiol. 43: 552-560   PUBMED   ScienceOn
6 Zinder, S. H., S. C. Cardwell, T. Anguish, M. Lee, and M. Koch. 1984. Methanogenesis in a thermophilic ($58{^{\circ}C}$) anaerobic digestor: Methanothrix sp. as an important aceticlastic methanogen. Appl. Environ. Microbiol. 47: 796-807   PUBMED   ScienceOn
7 Zinder, S. H. 1993. Physiological ecology of methanogens, pp. 128-206. In J. G. Ferry (ed.). Methanogenesis. Chapman & Hall, London, U.K
8 Gottschalk, G. 1985. Bacterial Metabolism, Second Edition, pp 252-260. Springer-Verlag, New York
9 Na, B. K., T. K. Hwang, S. H. Lee, D. H. Ju, B. I. Sang, and D. H. Park. 2007. Development of bioreactors for enrichment of chemolithotrophic methanogen and methane production. Kor. J. Microbiol. Biotechnol. 35: 52-57   과학기술학회마을
10 Lomans, B. P., R. Maas, R. Luderer, H. J. M. Op den Camp, A. Pol, C. van der Drift, and G. D. Vogels. 1999. Isolation and characterization of Methanomethylovorans hollandica gen. nov., sp. nov., isolated from freshwater sediment, a methyltrophic methanogen able to grow on dimethyl sulfide and methanethiol. Appl. Environ. Microbiol. 65: 3641-3650   PUBMED   ScienceOn
11 Smith, P. H. and R. A. Mah. 1966. Kinetics of acetate metabolism during sludge digestion. Appl. Environ. Microbiol. 14: 368-371
12 Hulshoff Pol, L. W., W. J. de Zeenw, C. T. M. Velzeboer, and G. Lettinga. 1983. Granulation in UASB-reactors. Water Sci. Technol. 15: 219-304
13 Ferguson, T. J. and R. A. Mah. 1983. Isolation and characterization of an $H_2$-oxidizing thermophilic methanogen. Appl. Environ. Microbiol. 45: 265-274   PUBMED   ScienceOn
14 Mackie, R. I. and M. P. Bryant. 1981. Metabolic activity of fatty acid-oxidizing bacteria and the contribution of acetate, propionate, butyrate, and $CO_2$ to methanogenesis in cattle waste at $40{^{\circ}C}$ and $60{^{\circ}C}$. Appl. Environ. Microbiol. 41: 1363-1373   PUBMED   ScienceOn
15 Angenent, L. T., S. Sung, and L. Raskin. 2002. Methanogenic population dynamics during startup of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Res. 36: 4648-4654   DOI   ScienceOn
16 Park, D. H. and J. G. Zeikus. 1999. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: Physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181: 2403-2410   PUBMED   ScienceOn
17 Keyser, M., R. C. Witthauhn, C. Lampecht, M. P. A. Coetzee, and T. J. Britz. 2006. PCR-based DGGE fingerprinting and identification of methanogens detected in three different types of UASB granules. System. Appl. Microbiol. 29: 77-84   DOI   ScienceOn
18 Mountfort, D. O. and R. A. Asher. 1978. Changes in proportions of acetate and carbon dioxide used as methane precursor during the anaerobic digestion of bovine waste. Appl. Environ. Microbiol. 35: 648-645   PUBMED   ScienceOn
19 Balch, W. E. and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-Mercaptoethanesulfonic acid (HSCoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781-791   PUBMED   ScienceOn
20 Hori, T., S. Haruta, Y. Ueno, M. Ishii, and Y. Igarashi. 2006. Dynamic transition of a methanogenic population in response to the concentration of volatile fatty acids in a thermophilic anaerobic digester. Appl. Environ. Microbiol. 72: 1623-1630   DOI   ScienceOn
21 Jetten, M. S. M., A. J. M. Stams, and A. J. Zehnder. 1989. Isolation and characterization of acetyl-coenzyme A synthetase from Methanothrix soehungenii. J. Bacteriol. 171: 5430-5435   PUBMED
22 Harris, J. E., P. A. Pinn, and R. P. Davis. 1984. Isolation and characterization of a novel thermophilic, freshwater methanogen. Appl. Environ. Microbiol. 48: 1123-1128   PUBMED   ScienceOn
23 Klene, R. P., S. Oremland, A. Catena, A. Pol. H. H. M. Op den Camp, and C. van der Drift. 1997. Formation of dimethyl sulfide and methanethiol in anoxic freshwater sediments. Appl. Environ. Microbiol. 63: 4741-4747   PUBMED   ScienceOn
24 Kaspar, H. F. and K. Wuhrmann. 1978. Product inhibition in sludge digestion. Microb. Ecol. 4: 241-248   DOI   ScienceOn
25 Jones, W. J., M. J. B. Paynter, and R. Gupta. 1983. Characterization of Methanococcus maripaludis sp. nov., a new methanogen isolated from salt marsh sediment. Arch. Microbiol. 135: 91-97   DOI
26 Oremland, R. S., R. P. Kiene, I. Mathrani, M. J. Whitica, and D. R. Boone. 1989. Description of an estuarine methylotrophic methanogen which grows on dimethyl sulfide. Appl. Environ. Microbiol. 55: 994-1002   PUBMED   ScienceOn
27 Tersteegen, A. and R. Hedderich. 1999. Methanobacterium thermoautotrophicum encodes two multisubunit membrane-bound [NiFe] hydrogenases. Transcription of the operons and sequence analysis of the deduced proteins. Eur. J. Biochem. 264: 930-943   DOI   ScienceOn
28 Calli, B., B. Mertoglu, B. Inanc, and O. Yenigun. 2005. Community changes during start-up in methanogenic bioreactors exposed to increasing levels of ammonia. Environ. Technol. 26: 85-91   DOI   ScienceOn
29 Sprott, G. D., I. Ekiel, and G. B. Patel. 1993. Metabolic pathways in Methanococcus jannashii and other methanogenic bacteria. Appl. Environ. Microbiol. 59: 1092-1098   PUBMED   ScienceOn
30 Zeikus, J. G. and R. S. Wolfe. 1972. Methanobacterium thermoautotrophicum sp. nov.: An anaerobic autotrophic, extreme thermophile. J. Bacteriol. 109: 707-713   PUBMED
31 Westermann, P., B. K. Ahring, and R. A. Mah. 1989. Threshold acetate concentrations for acetate catabolism by aceticlastic methanogenic bacteria. Appl. Environ. Microbiol. 55: 514-515   PUBMED   ScienceOn
32 Dhillon, A., M. Lever, K. G. Lloyd, D. B. Albert, M. L. Sogin, and A. Teske. 2005. Methanogen diversity evidenced by molecular characterization of methyl coenzyme M reductase A (mcrA) genes in hydrothermal sediments of the Suaymas Basin. Appl. Environ. Microbiol. 71: 4592-4601   DOI   ScienceOn
33 Ferry, J. G. 1993. Methanogenesis Ecology, Physiology, Biochemistry and Genetics. Chapman & Hall, New York
34 Huser, B. A., K. Wuhrmann, and A. J. Zehnder. 1982. Methanothrix soehngenii gen. nov. sp. nov., a new acetotrophic non-hydrogen-oxidizing methane bacterium. Arch. Microbiol. 132: 1-9   DOI
35 Imachi, H., S. Sakai, Y. Sekiguchi, S. Hanada, Y. Kamagata, A. Ohashi, and H. Harada. 2008. Methanolinea tarda gen. nov., sp. nov., a methane-producing archaeon isolated from a methanogenic digester sludge. Int. J. Syst. Evol .Microbiol. 58: 294-301   DOI   ScienceOn
36 Ovreas, L., L. Forney, F. L. Daae, and V. Torsvik. 1977. Distribution of bacterioplankton in meromictic Lake Saelenannet, as determined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for 16S-rRNA. Appl. Environ. Microbiol. 63: 3367-3373   ScienceOn