Browse > Article
http://dx.doi.org/10.4014/jmb.0906.06046

Buffering Effects of Calcium Salts in Kimchi: Lowering Acidity, Elevating Lactic Acid Bacterial Population and Dextransucrase Activity  

Seo, Eun-Chae (Division of Testing and Analysis, Seoul Regional Food and Drug Administration)
Moon, Jin-Seok (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Jung, Jee-Yun (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Kim, Ji-Sun (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Eom, Hyun-Ju (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Kim, So-Young (Functional Food and Nutrition Division, Department of Korean Food Research for Globalization, National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA))
Yoon, Hyang-Sik (Chungcheongbuk-do Agricultural Research and Extension Services)
Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.12, 2009 , pp. 1644-1649 More about this Journal
Abstract
This study investigates the buffering effects of calcium salts in kimchi on the total acidity, microbial population, and dextransucrase activity. Calcium chloride or calcium carbonate was added to dongchimi-kimchi, a watery radish kimchi, and the effects on various biochemical attributes were analyzed. The addition of 0.1% calcium chloride produced a milder decrease in the pH after 24 days of incubation, which allowed the lactic acid bacteria to survive longer than in the control. In particular, the heterofermentative Leuconostoc genus population was 10-fold higher than that in the control. When sucrose and maltose were also added along with the calcium salts, the dextransucrase activity in the kimchi was elevated and a higher concentration of isomaltooligosaccharides was synthesized when compared with the control. Calcium chloride was determined as a better activator compound of dextransucrase than calcium carbonate, probably because of its higher solubility. Therefore, the results of this study confirm the ability of the proposed approach to modulate the kimchi fermentation process and possibly enhance the quality of kimchi based on the addition of dietary calcium salts.
Keywords
Dextransucrase; kimchi; Leuconostoc; calcium carbonate; calcium chloride; isomaltooligosaccharide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Cheigh, H. S. and K. Y. Park. 1994. Biochemical, Microbiological and Nutritional Aspects of Kimchi. Crit. Rev. Food Sci. Nutr. 32: 175-203
2 Eom, H. J., D. M. Seo, and N. S. Han. 2007. Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. Int. J. Food Microbiol. 117: 61-67   DOI   ScienceOn
3 Lee, H. R. 1990. A study on the flavor compounds of dongchimi. Korean J. Soc. Food Sci. 6: 1-8   과학기술학회마을
4 Lee, J. S., G. Y. Heo, J. W. Lee, Y. J. Oh, J. A. Park, Y. H. Park, Y. R. Pyun, and J. S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150   DOI   ScienceOn
5 Vyas, H. K. and P. S. Tong. 2004. Impact of source and level of calcium fortification on the heat stability of reconstituted skim milk powder. J. Dairy Sci. 87: 1177-1180   DOI   ScienceOn
6 De Valdez, G., G. S. de Giore, M. Garro, F. Mozzi, and G. Oliver. 1990. Lactic acid bacteria from naturally fermented vegetables. Microbiol. Alim. Nutr. 8: 175-179
7 Lee, D. S. and Y. S. Lee. 1997. CO production in fermentation of dongchimi (pickled radish roots, watery radish kimchi). J. Korean Soc. Food Sci. Nutr. 26: 1021-1027   ScienceOn
8 Dybing, S. T., J. A. Wiegand, S. A. Brudvig, E. A. Huang, and R. C. Chandan. 1988. Effect of processing variables on the formation of calcium lactate crystals on Cheddar cheese. J. Dairy Sci. 71:1701-1710   DOI
9 Weinstein, L. and L. F. Rettgeri. 1932. Biological and chemical studies of the Lactobacillus genus with special reference to xylose fermentation by L. pentoaceticus. J. Bacteriol. 24:1-28   PUBMED
10 Moon, S. W., D. W. Cho, W. S. Park, and M. S. Jang. 1995. Effect of salt concentration on dongchimi fermentation. Kor. J. Food Sci. Technol. 27: 11-18   과학기술학회마을   ScienceOn
11 Sanoja, R. R., J. Morlon-Guyot, J. Jore, J. Pintado, N. Juge, and J. P. Guyot. 2000. Comparative characterization of complete and truncated forms of Lactobacillus amylovorus $\alpha$-amylase and role of the C-terminal direct repeats in raw-starch binding. Appl. Environ. Microbiol. 66: 3350-3356   DOI   PUBMED
12 Kitaoka, M. and J. F. Robyt. 1998. Large-scale preparation of highly purified dextransucrase from a high-producing constitutive mutant of Leuconostoc mesenteroides B-512FMC. Enzyme Microb. Technol. 23: 386-391   DOI   ScienceOn
13 Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202   DOI   ScienceOn
14 Robyt, J. F. and S. H. Eklund. 1983. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 121: 279-286   DOI   PUBMED   ScienceOn
15 Bronner, F and D. Pansu.1999. Nutritional aspects of calcium absorption. J. Nutr. 129: 9-12   PUBMED   ScienceOn
16 Han, N. S., Y. S. Jung, H. J. Eom, Y. H. Koh, J. F. Robyt, and J. H. Seo. 2002. Simultaneous biocatalytic synthesis of panose during lactate fermentation in kimchi. J. Microbiol. Biotechnol. 12: 46-52   과학기술학회마을   ScienceOn
17 Monchois, V., A. Reverte, M. Remaud-Simeon, P. Monsan, and R. M. Willemot. 1998. Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis. Appl. Environ. Microbiol. 64: 1644-1649   PUBMED   ScienceOn
18 Miller, A. W., S. H. Ecklund, and J. F. Robyt. 1986. Milligram to gram scale purification and characterization of dextransucrase from Leuconostoc mesenteroides NRRL B-512F. Carbohydr. Res. 147: 119-133   DOI   ScienceOn
19 Kang, K. O., J. G. Kim, and W. J. Kim. 1991. Effect of heat treatment and salts addition on dongchimi fermentation. Korean J. Food Sci. Technol. 20: 565-571   과학기술학회마을
20 Newbrun, E. and J. Carlsson. 1969. Reaction rate of dextransucrase from Streptococcus sanguis in the presence of various compounds. Arch. Oral Biol. 14: 461-466   DOI   ScienceOn
21 Heaney, R. P., K. Rafferty, M. S. Dowell, and J. Bierman. 2005. Calcium fortification systems differ in bioavailability. J. Am. Diet. Assoc. 105: 807-809   DOI   ScienceOn
22 AOAC. 1980. Official Methods of Analysis, 13th Ed. AOAC. International, Washington, D.C. U.S.A
23 Miller, A. W. and J. F. Robyt. 1986. Activation and inhibition of dextransucrase by calcium. Biochim. Biophys. Acta 880: 32-39   DOI   PUBMED   ScienceOn
24 van Hijum, S. A. F. T., G. H. van Geel-Schutten, H. Rahaoui, M. J. E. C. van der Maarel, and L. Dijkhuizen. 2002. Characterization of a novel fructosyltransferase from Lactobacillus reuteri that synthesizes high-molecular-weight inulin and inulin oligosaccharides. Appl. Environ. Microbiol .68: 4390-4398   DOI   ScienceOn
25 Eom, H. J. 2002. Isolation of psychrotrophic Leuconostoc mesenteroides producing highly active dextransucrase and application to lactate-fermented foods. MS thesis, Chungbuk National University, Cheongju, Korea