Browse > Article
http://dx.doi.org/10.4014/jmb.0904.04028

Two Novel Duck Antibacterial Peptides, Avian $\beta$-Defensins 9 and 10, with Antimicrobial Activity  

Ma, Deying (Institute of Animal Nutrition, Northeast Agricultural University)
Liao, Wenyan (Institute of Animal Nutrition, Northeast Agricultural University)
Wang, Ruiqin (Institute of Animal Nutrition, Northeast Agricultural University)
Han, Zongxi (Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
Liu, Shengwang (Division of Avian Infectious Diseases, National Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.11, 2009 , pp. 1447-1455 More about this Journal
Abstract
Two novel avian $\beta$-defensins (AvBDs) isolated from duck liver were characterized and their homologies with other AvBDs were analyzed. They were shown to be duck AvBD9 and AvBD10. The mRNA expression of the two genes was analyzed in 17 different tissues from 1-28-day-old ducks. AvBD9 was differentially expressed in the tissues, with especially high levels of expression in liver, kidney, crop, and trachea, whereas AvBD10 was only expressed in the liver and kidney of ducks at all the ages investigated. We produced and purified GST-tagged recombinant AvBD9 and AvBDI0 by expressing the two genes in Escherichia coli. Both recombinant proteins exhibited antimicrobial activity against several bacterial strains. The results revealed that both recombinant proteins retained their antimicrobial activities against Staphylococcus aureus under a range of different temperatures ($-70^{\circ}C-100^{\circ}C$) and pH values (pH 3-12).
Keywords
Antimicrobial peptides; duck; avian $\beta$-defensins; antimicrobial activity;
Citations & Related Records

Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
2 Evans, E. W., G. G. Beach, and J. Wunderlich. 1994. Isolation of antimicrobial peptides from avian heterophils. J. Leukoc. Biol. 56: 661-665   PUBMED
3 Ganz, T. 2003. Defensins: Antimicrobial peptides of innate immunity. Nat. Rev. Immunol. 3: 710-720   DOI   PUBMED   ScienceOn
4 Harwig, S. S. L., K. M. Swiderek, and V. N. Kokryakov. 1994. Gallinacins cysteine-rich antimicrobial peptides of chicken leukocytes. FEBS Lett. 342: 218-285
5 Ma, D. Y., S. W. Uu, Z. X. Han, Y. J. Li, and A. S. Shan. 2008. Expression and characterization of recombinant gallinacin-9 and gallinacin-8 in Escherichia coli. Protein Express. Purif. 58: 284-291   DOI   ScienceOn
6 Satchell, D. P., T. Sheynis, Y. Shirafuji, S. Kolusheva, A. J. Ouellette, and R. Jelinek. 2003. Interactions of mouse Paneth cell alpha-defensins and alpha-defensin precursors with membranes. Prosegment inhibition of peptide association with biomimetic membranes. J. Biol. Chem. 278: 13838-13846   DOI   ScienceOn
7 Schagger, H. and G. von Jagow. 1987. Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379   DOI   ScienceOn
8 Sugiarto, H. and P. L. Yu. 2006. Identification of three novel ostricacins: An update on the phylogenetic perspective of $\beta$-defensins. Int. J. Antimicrob. Agents 27: 229-235   DOI   ScienceOn
9 Yu, P. L., S. D. Choudhury, and K. Ahrens. 2001. Purification and characterization of the antimicrobial peptide, ostricacin. Biotechnol. Lett. 23: 207-210   DOI   ScienceOn
10 Thouzeau, C., Y. Le Maho, and G. Froget. 2003. Sphenicins, avian $\beta$-defensins in preserved stomach contents of the King Penguin Aptenodytes patagonicus. J. Biol. Chem. 27: 51053-51058
11 Lynn, D. J., R. Higgs, and S. Gaines. 2004. Bioinfonnatic discovery and initial characterization of nine novel antimicrobial peptide genes in the chicken. Immunogenetics 56: 170-177   DOI   ScienceOn
12 Lynn, D. J., R. Higgs, A. T. Lloyd, V. Herve-Grepinet, Y. Nys, F. S. L. Brinkman, et al. 2007. Avian beta-defensin nomenclature: A community proposed update. Immunol. Lett. 110: 86-89   DOI   ScienceOn
13 Harmon, B. G. 1988. Avian heterophils in flammation and disease resistance. Poult. Sci. 77: 972-977
14 Evans, E. W., K. M. Beach, and M. W. Moore. 1995. Antimicrobial activity of chicken and turkey heterophil peptides CHP1, CHP2, THP1, and THP3. Vet. Microbiol. 47: 295-303   DOI   PUBMED   ScienceOn
15 Higgs, R., D. J. Lynn, and S. Gaines. 2005. The synthetic form of a novel chicken betadefensin identifiedin silico is predominantly active against intestinal pathogens. Immunogenetics 57: 90-98   DOI   ScienceOn
16 Milona, P., C. L. Townes, R. M. Bevan, and J. Hall. 2007. The chicken host peptides gallinacins 4, 7, and 9 have antimicrobial activity against Salmonella serovars. Biochem. Biophys. Res. Commun. 356: 169-174   DOI   ScienceOn
17 Hughes, A. L. 1999. Evolutionary diversification of the mammalian defensins. Cell Mol. Life Sci. 56: 94-103   DOI   ScienceOn
18 Thomma, B. P., B. P. Cammune, and K. Thevissen. 2002. Plant desensins. Planta 216: 193-202   DOI   ScienceOn
19 Xiao, Y., A. L. Hughes, J. Ando, M. Yoichi, J. Cheng, D. Skinner-Noble, and G Zhang. 2004. A genome-wide screen identifies a single beta-defensin gene cluster in the chicken: Implications for the origin and evolution of mammalian defensins. BMC Genomics. 5: 56-67   DOI   PUBMED   ScienceOn
20 Ganz, T. 2005. Defensins and other antimicrobial peptides: A historical perspective and an update. Comb. Chem. High Throughput Screen. 8:209-217   DOI   PUBMED   ScienceOn
21 Schutte, B. C. and P. B. McCray. 2002. Beta defensins in lung host defense. Annu. Rev. Physiol. 64: 709-748   DOI   ScienceOn
22 Froy, O. and M. Gurevita. 2003. Arthropod and mollusk defensins - evolution by exon-shuffiing. Trends Genet. 19: 684-687   DOI   ScienceOn
23 Sugiarto, H. and P. L. Yu. 2004. Avian antimicrobial peptides: The defense role of beta-defensins. Biochem. Biophys. Res. Commun. 323: 721-727   DOI   PUBMED   ScienceOn
24 Higgins, D. G and P. M. Sharp. 1988. CLUSTAL: A package for performing multiple sequence alignment on a microcomputer. Gene 73: 237-244   DOI   ScienceOn
25 Hughes, A. L. and M. Yeager. 1997. Coordinated amino acid changes in the evolution of mammalian defensins. J. Mol. Evol. 44: 675-682   DOI   ScienceOn
26 Lehrer, R. I. and T. Ganz. 2002. Defensins of vertebrate animals. Curr. Opin. Immunol. 14: 96-102   DOI   ScienceOn
27 Billet, P., J. L. Dimarcq, C. Hetru, M. Lagueux, M. M. Charlet, G Hegy, A. Van Dorsselaer, and J. A. Hovmann. 1993. A novel inducible antibacterial peptide of Drosophila carries an O-glycosylated substitution. J. Biol. Chem. 268: 14893-14897   PUBMED
28 van Dijk, A., E. J. A. Veldhuizen, S. I. C. Kalkhove, J. L. M. T. Bokhoven, R. A. Romijn, and H. P. Haagsman. 2007. The $\beta$-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrob. Agents Chemother. 51: 912-922   DOI   ScienceOn