Browse > Article
http://dx.doi.org/10.4014/jmb.0904.04017

Distribution Patterns of the Members of Phylum Acidobacteria in Global Soil Samples  

Lee, Sang-Hoon (Department of Environmental Sciences, Hankuk University of Foreign Studies)
Cho, Jae-Chang (Department of Environmental Sciences, Hankuk University of Foreign Studies)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.11, 2009 , pp. 1281-1287 More about this Journal
Abstract
The distribution pattern of the phylum Acidobacteria, a previously uncultured bacterial group, was investigated by molecular ecological analyses of global soil samples collected from pristine ecosystems across five continents. Acidobacterial 16S rDNAs were observed in almost all soil samples, and members of acidobacterial primer group A were detected in all samples that harbored the phylum Acidobacteria. Other primer groups, Y, G, and O, showed limited distribution patterns. We further divided the primer groups into acidobacterial subdivisions (class-level). Subdivisional distribution patterns were determined by comparing the observed T-RFs with theoretical T-RFs predicted by in silico digestion of acidobacterial 16S rDNAs. Consistent with the PCR results obtained with subgroup-specific primers, T-RFLP analyses showed that acidobacterial subdivision 1 belonging to primer group A was present in the majority of the soil samples. This study revealed that the phylum Acidobacteria could be globally distributed. At the subdivisional level, acidobacterial subdivision 1 might be the most widely distributed group in this phylum, indicating that members of subdivision 1 might be adapted to various soil environments, and members belonging to other subdivisions might be restricted to certain geographic regions or habitats.
Keywords
Acidobacteria; distribution; PCR; T-RFLP;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Cole, J. R., B. Chai, R. J. Farris, Q. Wang, S. A. Kularn, D. M. McGarrell, G. M. Garrity, and J. M. Tiedje. 2005. The Ribosomal Database Project (RDP-II): Sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33: D294-296   DOI   PUBMED   ScienceOn
2 Davis, K. E., S. J. Joseph, and P. H. Janssen. 2005. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl. Environ. Microbiol. 71: 826-834   DOI   ScienceOn
3 Kaplan, C. W. and C. L. Kitts. 2003. Variation between observed and true terminal restriction fragment length is dependent on true TRF length and purine content. J. Microbiol. Methods 54: 121-125   DOI   ScienceOn
4 Kuske, C. R., S. M. Barns, and J. D. Busch. 1997. Diverse uncultivated bacterial groups from soils of the arid southwestern United States that are present in many geographic regions. Appl. Environ. Microbiol. 63: 3614-3621   PUBMED   ScienceOn
5 LaPara, T. M., C. H. Nakatsu, L. Pantea, and J. E. Alleman. 2000. Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl. Environ. Microbiol. 66: 3951-3959   DOI   ScienceOn
6 Layton, A. C., P. N. Karanth, C. A. Lajoie, A. J. Meyers, J. R. Gregory, R. D. Stapleton, D. E. Taylor, and G S. Sayler. 2000. Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis. Appl. Environ. Microbiol. 66: 1167-1174   DOI   ScienceOn
7 Lee, S. H., J. O. Ka, and J. C. Cho. 2008. Members of the phylum Acidobacteria are dominant and metabolically active in rhizosphere soil. FEMS Microbiol. Lett. 285: 263-269   DOI   ScienceOn
8 Liesack, W., F. Bak, J. U. Kreft, and E. Stackebrandt. 1994. Holophaga foetida gen. nov., sp. nov., a new, homoacetogenic bacterium degrading methoxylated aromatic compounds. Arch. Microbiol. 162: 85-90   DOI   PUBMED   ScienceOn
9 Sait, M., P. Hugenholtz, and P. H. Janssen. 2002. Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ. Microbiol. 4: 654-666   DOI   ScienceOn
10 Barns, S. M., S. L. Takala, and C. R Kuske. 1999. Wide distribution and diversity of members of the bacterial kingdom Acidobacterium in the environment. Appl. Environ. Microbiol. 65: 1731-1737   PUBMED   ScienceOn
11 Cho, J. C. and J. M. Tiedje. 2000. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66: 5448-5456   DOI   ScienceOn
12 Luna, V. A., D. B. Jernigan, A. Tice, J. D. Kellner, and M. C. Roberts. 2000. A novel multiresistant Streptococcus pneumoniae serogroup 19 clone from Washington State identified by pulsedfield gel electrophoresis and restriction fragment length patterns. J Clin. Microbiol. 38: 1575-1580   PUBMED   ScienceOn
13 Sait, M., K. E. Davis, and P. H. Janssen. 2006. Effect of pH on isolation and distribution of members of subdivision 1 of the phylum Acidobacteria occurring in soil. Appl. Environ. Microbiol. 72: 1852-1857   DOI   ScienceOn
14 Hallberg, K. B. and D. B. Johnson. 2003. Novel acidophiles isolated from moderately acidic mine drainage waters. Hydrometallurgy 71: 139-148   DOI   ScienceOn
15 Zimmermann, J., J. M. Gonzalez, C. Saiz-Jimenez, and W. Ludwig. 2005. Detection and phylogenetic relationships of highly diverse uncultured acidobacterial communities in Altamira Cave using 23S rRNA sequence analysis. Geomicrobiol. J. 22: 379-388   DOI   ScienceOn
16 Dunbar, J., S. Takala, S. M. Barns, J. A. Davis, and C. R. Kuske. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65: 1662-1669   PUBMED   ScienceOn
17 Hall, T. A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl. Acids Symp. Ser. 41: 95-98
18 Hugenholtz, P., B. M. Goebel, and N. R Pace. 1998. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. J. Bacteriol. 180: 4765-4774   PUBMED   ScienceOn
19 Kaplan, C. W., J. C. Astaire, M. E. Sanders, B. S. Reddy, and C. L. Kitts. 2001. 16S Ribosomal DNA terminal restriction fragment pattern analysis of bacterial communities in feces of rats fed Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 67: 1935-1939   DOI   ScienceOn
20 Penn, K., D. Wu, J. A. Eisen, and N. Ward. 2006. Characterization of bacterial communities associated with deep-sea corals on Gulf of Alaska seamounts. Appl. Environ. Microbiol. 72: 1680-1683   DOI   ScienceOn
21 Engebretson, J. J. and C. L. Moyer. 2003. Fidelity of select restriction endonucleases in determining microbial diversity by terminal-restriction fragment length polymorphism. Appl. Environ. Microbiol. 69: 4823-4829   DOI   ScienceOn
22 Garrity, G. M., J. A. Bell, and D. B. Searles. 2004. Taxonomic outline of the procaryotes, In: Bergeys Manual of Systematic Bacteriology, 2nd Ed., release 5.0. Springer-Verlag, New York, NY
23 Sievert, S. M., J. Kuever, and G. Muyzer. 2000. Identification of 16S ribosomal DNA-defined bacterial populations at a shallow submarine hydrothermal vent near Milos Island (Greece). Appl. Environ. Microbiol. 66: 3102-3109   DOI   ScienceOn
24 Massol-Deya, A. A., D. A. Odelson, R. F. Hickey, and J. M. Tiedje. 1995. Bacterial community fingerprinting of amplified 16S and 16S-23S ribosomal RNA gene sequences and restriction endonuclease analysis (ARDRA), pp. 1-8. In A. D. L. Akkermans, et al. (eds.). Molecular Microbial Ecology Manual. Kluwer Academic Publisher, Dordrecht, The Netherlands
25 Kishimoto, N. and T. Tano. 1987. Acidophilic heterotrophic bacteria isolated from acidic mine drainage, sewage, and soils. J. Gen. Appl. Microbiol. 33: 11-25   DOI
26 Stevenson, B. S., S. A. Eichorst, J. T. Wertz, T. M. Schmidt, and J. A. Breznak. 2004. New strategies for cultivation and detection of previously uncultured microbes. Appl. Environ. Microbiol. 70: 4748-4755   DOI   ScienceOn
27 Coates, J. D., D. J. Ellis, C. V. Gaw, and D. R. Lovley. 1999. Geothrixfermentans gen. nov., sp. nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int. J. Syst. Bacteriol. 49 Pt 4: 1615-1622   DOI   ScienceOn
28 Kitts, C. L. 2001. Terminal restriction fragment patterns: A tool for comparing microbial communities and assessing community dynamics. Curr. Issues Intest. Microbiol. 2: 17-25   PUBMED   ScienceOn
29 Garrity, G. M., T. G. Lilburn, J. R Cole, S. H. Harrison, J. Euzeby, and B. J. Tindall. 2007. The Taxonomic Outline of Bacteria and Archaea, release 7.7. http://www.taxonomicoutline.org/indexphp/toba/index
30 Janssen, P. H., P. S. Yates, B. E. Grinton, P. M. Taylor, and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria; Actinobacteria. Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391-2396   DOI   ScienceOn
31 Fulthorpe, R. R., A. N. Rhodes, and J. M. Tiedje. 1998. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl. Environ. Microbiol. 64: 1620-1627   PUBMED   ScienceOn
32 Ludwig, W., S. H. Bauer, M. Bauer, J. Held, G. Kirchhof, R. Schulze, et al. 1997. Detection and in situ identification of representatives of a widely distributed new bacterial phylum. FEMS Microbiol. Lett. 153: 181-190   DOI   ScienceOn
33 Eichorst, S. A., J. A. Breznak, and T. M. Schmidt. 2007. Isolation and characterization of soil bacteria that define Terriglobus gen. nov., in the phylum Acidobacteria. Appl. Environ. Microbiol. 73: 2708-2717   DOI   ScienceOn
34 Janssen, P. H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728   DOI   PUBMED   ScienceOn
35 Paster, B. J., W. A. Falkler Jr, C. O. Enwonwu, E. O. Idigbe, K. O. Savage, V. A. Levanos, et al. 2002. Prevalent bacterial species and novel phylotypes in advanced noma lesions. J. Clin. Microbiol. 40: 2187-2191   DOI   ScienceOn
36 Joseph, S. J., P. Hugenholtz, P. Sangwan, C. A. Osborne, and P. H. Janssen. 2003. Laboratory cultivation of widespread and previously uncultured soil bacteria. Appl. Environ. Microbiol. 69: 7210-7215   DOI   ScienceOn
37 Fukunaga, Y., M. Kurahashi, K. Yanagi, A. Yokota, and S. Harayama. 2008. Acanthopleuribacter pedis gen. nov., sp. nov., a marine bacterium isolated from a chiton, and description of Acanthopleuribacteraceae fam. nov., Acanthopleuribacterales ord. nov., Holophagaceae fam. nov., Holophagales ord. nov. and Holophagae classis nov. in the phylum 'Acidobacteria', Int. J. Syst. Evol. Microbiol. 58: 2597-2601   DOI   ScienceOn
38 Bryant, D. A., A. M. Costas, J. A. Maresca, A. G. Chew, C. G. Klatt, M. M. Bateson, et al. 2007. Candidatus Chloracidobacterium thermophilum: An aerobic phototrophic Acidobacterium. Science 317: 523-526   DOI   PUBMED   ScienceOn
39 Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63: 4516-4522   PUBMED   ScienceOn
40 Koch, I. H., F. Gich, P. F. Dunfield, and J. Overmann. 2008. Edaphobacter modestus gen. nov., sp. nov., and Edaphobacter aggregans sp. nov., acidobacteria isolated from alpine and forest soils. Int. J. Syst. Evol. Microbiol. 58: 1114-1122   DOI   ScienceOn
41 Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): An emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Microbiol. 2: 323-327   DOI   PUBMED   ScienceOn