Browse > Article
http://dx.doi.org/10.4014/jmb.0901.039

Novel Low-Temperature-Active Phytase from Erwinia carotovora var. carotovota ACCC 10276  

Huang, Huoqing (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Luo, Huiying (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Wang, Yaru (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Fu, Dawei (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Shao, Na (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Yang, Peilong (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Meng, Kun (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Yao, Bin (Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1085-1091 More about this Journal
Abstract
A phytase with high activity at low temperatures has great potential for feed applications, especially in aquaculture. Therefore, this study used a degenerate PCR and TAIL PCR to clone a phytase gene from Erwinia carotovora var. carotovota, the cause of soft rot of vegetables in the ground or during cold storage. The full-length 2.5-kb fragment included an open reading frame of 1,302 bp and encoded a putative phytase of 45.3 kDa with a 50% amino acid identity to the Klebsiella pneumoniae phytase. The phytase contained the active site RHGXRXP and HD sequence motifs that are typical of histidine acid phosphatases. The enzyme was expressed in Escherichia coli, purified, and displayed the following characteristics: a high catalytic activity at low temperatures (retaining over 24% activity at $5^{\circ}C$) and remarkably thermal lability (losing >96% activity after incubation at $60^{\circ}C$ for 2 min). The optimal phytase activity occurred at pH 5.5 and ${\sim}49^{\circ}C$, and the enzyme activity rapidly decreased above $40^{\circ}C$. When compared with mesophilic counterparts, the phytase not only exhibited a high activity at a low temperature, but also had a low $K_m$ and high $k_{cat}$. These temperature characteristics and kinetic parameters are consistent with low-temperature-active enzymes. To our knowledge, this would appear to be the first report of a low-temperature-active phytase and its heterogeneous expression.
Keywords
Aquaculture; low-temperature-active enzyme; Erwinia carotovora; phytase;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Greiner, R. and U. Konietzny. 2006. Phytase for food application. Food Technol. Biotechnol. 44: 125-140   ScienceOn
2 Lei, X. and Jes$\acute{u}$s M. Porres. 2003. Phytase enzymology, applications, and biotechnology. Biotechnol. Lett. 25: 1787-1794   DOI   ScienceOn
3 Luo, H., B. Yao, T. Yuan, Y. Wang, X. Shi, N. Wu, and Y. Fan. 2004. Overexpression of Escherichia coli phytase with high specific activity. Chin. J. Biotechnol. 20: 78-84
4 Makarewicz, O., S. Dubrac, T. Msadek, and R. Borriss. 2006. Dual role of the PhoP_P response regulator: Bacillus amyloliquefaciens FZB45 phytase gene transcription is directed by positive and negative interactions with the phyC promoter. J. Bacteriol. 188: 6953-6965   DOI   ScienceOn
5 Perombelon, M. C. M. and A. Kelman. 1980. Ecology of the soft rot erwinias. Annu. Rev. Phytopathol. 18: 361-387   DOI   ScienceOn
6 Rodriguez, E., Z. A. Wood, P. A. Karplus, and X. Lei. 2000. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 382: 105-112   DOI   ScienceOn
7 Simon, O. and F. A. Igbasan. 2002. In vitro properties of phytases from various microbial origins. Int. J. Food Sci. Technol. 37:813-822   DOI   ScienceOn
8 Wodzinski, R. J. and A. H. J. Ullah. 1996. Phytase. Adv. Appl. Microbiol. 42: 263-302   DOI   PUBMED
9 Mullaney, E. J., D. M. Gibson, and A. H. J. Ullah. 1991. Positive identification of a lambda gt11 clone containing a region of fungal phytase gene by immunoprobe and sequence verification. Appl. Microbiol. Biotechnol. 35: 611-614   PUBMED   ScienceOn
10 Konietzny, U. and R. Greiner. 2004. Bacterial phytase: Potential application, in vivo function and regulation of its synthesis. Braz. J. Microbiol. 35: 11-18   ScienceOn
11 Boyce, A. and G. Walsh. 2006. Comparison of selected physicochemical characteristics of commercial phytases relevant to their application in phosphate pollution abatement. J. Environ. Sci. Health A 41: 789-98   DOI   ScienceOn
12 Dassa, J., C. Marck, and P. L. Boquet. 1990. The complete nucleotide sequence of the Escherichia coli appA reveals significant homology between pH 2.5 acid phosphatase and glucose-1-phosphatase. J. Bacteriol. 172: 5497-5500
13 Siddiqui, K. S. and R. Cavicchioli. 2006. Cold adapted enzymes. Annu. Rev. Biochem. 75: 403-433   DOI   ScienceOn
14 Tye, A. J., F. K. Siu, T. Y. Leung, and B. L. Lim. 2002. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis. Appl. Microbiol. Biotechnol. 59: 190-197   DOI   ScienceOn
15 Nickolay, V. Z., V. S. Anna, S. G. Mikhail, B. S. Aleksei, and P. S. Sergei. 2004. Gene cloning, expression and characterization of a novel phytase from Obesumbacterium proteus. FEMS Microbiol. Lett. 236: 283-290   DOI   ScienceOn
16 Reddy, N. R., S. K. Sathe, and D. K. Salunkhe. 1989. Phytases in legumes and cereals. Adv. Food Res. 28: 1-92
17 Sajidan, A., A. Farouk, R. Greiner, P. Jungblut, E. C. M$\ddot{u}$ller, and R. Borriss. 2004. Molecular and physiological characterization of a 3-phytase from soil bacterium Klebsiella sp. SR1. Appl. Microbiol. Biotechnol. 65: 110-118   PUBMED   ScienceOn
18 Huang, H., H. Luo, P. Yang, K. Meng, Y. Wang, T. Yuan, Y. Bai, and B. Yao. 2006. A novel phytase with preferable characteristics from Yersinia intermedia. Biochem. Biophys. Res. Commun. 350: 884-889   DOI   ScienceOn
19 Seo, M. J., J. N. Kim, E. A. Cho, H. Park, H. J. Choi, and Y. R. Pyun. 2005. Purification and characterization of a novel extracellular alkaline phytase from Aeromonas sp. J. Microbiol. Biotechnol. 15: 745-748   ScienceOn
20 Unno, Y., K. Okubo, J. Wasaki, T. Shinano, and M. Osaki. 2005. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ. Microbiol. 7: 396-404   DOI   ScienceOn
21 In, M. J., E. S. Jang, Y. J. Kim, and N. S. Oh. 2004. Purification and properties of an extracellular acid phytase from Pseudomonas fragi Y9451. J. Microbiol. Biotechnol. 14: 1004-1008   ScienceOn
22 Lim, D., S. Golovan, C. W. Forsberg, and Z. Jia. 2000. Crystal structures of Escherichia coli phytase and its complex with phytate. Nat. Struct. Biol. 7: 108-113   DOI   ScienceOn
23 Pandey, A., G. Szakacs, C. R. Soccol, J. A. Rodriguez-Leon, and V. T. Soccol. 2001. Production, purification and properties of microbial phytases. Bioresour. Technol. 77: 203-214   DOI   ScienceOn
24 Vohra, A. and T. Satyanarayana. 2003. Phytases: Microbial sources, production, purification, and potential biotechnological applications. Crit. Rev. Biotechnol. 23: 29-60   DOI   ScienceOn
25 Cao, L., W. Wang, C. Yang, Y. Yang, J. Diana, A. Yakupitiyage, Z. Luo, and D. Li. 2007. Application of microbial phytase in fish feed. Enzyme Microb. Technol. 40: 497-507   DOI   ScienceOn
26 Feller, G., E. Narinx, J. Arpigny, M. Aittaleb, E. Baise, S. Genecot, and C. Gerday. 1996. Enzymes from psychrophilic organisms. FEMS Microbiol. Rev. 18: 189-202   DOI   ScienceOn
27 Pasamontes, L., M. Haiker, M. Wyss, M. Tessier, and A. P. G. M. van Loon. 1997. Gene cloning, purification and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Appl. Environ. Microbiol. 63: 1696-1700   PUBMED   ScienceOn
28 Mullaney, E. J. and A. H. J. Ullah. 2005. Conservation of cysteine residues in fungal histidine acid phytases. Biochem. Biophys. Res. Commun. 328: 404-408   DOI   ScienceOn
29 Elkhalil, E. A. I., K. M$\ddot{a}$nner, R. Borriss, and O. Simon. 2007. In vitro and in vivo characteristics of bacterial phytases and their efficacy in broiler chickens. Brit. Poult. Sci. 48: 64-70   DOI   ScienceOn
30 Asryants, R. A., I. V. Duszenkova, and N. K. Nagradova. 1985. Determination of Sepharose-bound protein with Coomassie brilliant blue G-250. Anal. Biochem. 151: 571-574   DOI   ScienceOn
31 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2006. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599   DOI   ScienceOn
32 Mullaney, E. J., C. B. Daly, and A. H. J. Ullah. 2001. Advances in phytase research. Adv. Appl. Microbiol. 47: 157-199   DOI