Browse > Article

The Diversity of Lysine-Acetylated Proteins in Escherichia coli  

Yu, Byung-Jo (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Jung-Ae (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Moon, Jeong-Hee (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Ryu, Seong-Eon (Systemic Proteomics Research Center, Korea Research Institute of Bioscience and Biotechnology)
Pan, Jae-Gu (Systems Microbiology Research Center, Korea Research Institute of Bioscience and Biotechnology)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.9, 2008 , pp. 1529-1536 More about this Journal
Abstract
Acetylation of lysine residues in proteins is a reversible and highly regulated posttranslational modification. However, it has not been systematically studied in prokaryotes. By affinity immunoseparation using an anti-acetyllysine antibody together with nano-HPLC/MS/MS, we identified 125 lysine-acetylated sites in 85 proteins among proteins derived from Escherichia coli. The lysine-acetylated proteins identified are involved in diverse cellular functions including protein synthesis, carbohydrate metabolism, the TCA cycle, nucleotide and amino acid metabolism, chaperones, and transcription. Interestingly, we found a higher level of acetylation during the stationary phase than in the exponential phase; proteins acetylated during the stationary phase were immediately deacetylated when the cells were transferred to fresh LB culture medium. These results demonstrate that lysine acetylation is abundant in E. coli and might be involved in modifying or regulating the activities of various enzymes involved in critical metabolic processes and the synthesis of building blocks in response to environmental changes.
Keywords
Lysine acetylation; Escherichia coli; growth phase;
Citations & Related Records

Times Cited By Web Of Science : 22  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 McKinsey, T. A. and E. N. Olson. 2004. Cardiac histone acetylation - therapeutic opportunities abound. Trends Genet. 20: 206-213   DOI   ScienceOn
2 Vidali, G., E. L. Gershey, and V. G. Allfrey. 1968. Chemical studies of histone acetylation. The distribution of ${\varepsilon}-N-acetyllysine$ in calf thymus histones. J. Biol. Chem. 243: 6361-6366
3 Bordone, L. and L. Guarente. 2005. Calorie restriction, SIRT1 and metabolism: Understanding longevity. Nat. Rev. Mol. Cell Biol. 6: 298-305   DOI   ScienceOn
4 Caron, C., C. Boyault, and S. Khochbin. 2005. Regulatory cross-talk between lysine acetylation and ubiquitination: Role in the control of protein stability. Bioessays 27: 408-415   DOI   ScienceOn
5 Cohen, H. Y., C. Miller, K. J. Bitterman, N. R. Wall, B. Hekking, B. Kessler, et al. 2004. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305: 390-392   DOI   ScienceOn
6 Gardner, J. G., F. J. Grundy, T. M. Henkin, and J. C. Escalante- Semerena. 2006. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without $NAD^+$ involvement in Bacillus subtilis. J. Bacteriol. 188: 5460-5468   DOI   ScienceOn
7 Hughes, R. M. and M. L. Waters. 2006. Effects of lysine acetylation in a ${\beta}-hairpin$ peptide: Comparison of an $amide-{\pi}$ and a $cation-{\pi}$ interaction. J. Am. Chem. Soc. 128: 13586-13591   DOI   ScienceOn
8 Kim, S. C., R. Sprung, Y. Chen, Y. Xu, H. Ball, J. Pei, et al. 2006. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol. Cell. 23: 607-618   DOI   ScienceOn
9 Vaziri, H., S. K. Dessain, E. Ng Eaton, S. I. Imai, R. A. Frye, T. K. Pandita, L. Guarente, and R. A. Weinberg. 2001. $hSIR2^{SIRT1}$ functions as an NAD-dependent p53 deacetylase. Cell 107: 149-159   DOI   ScienceOn
10 Carrozza, M. J., R. T. Utley, J. L. Workman, and J. Cote. 2003. The diverse functions of histone acetyltransferase complexes. Trends Genet. 19: 321-329   DOI   ScienceOn
11 Brunet, A., L. B. Sweeney, J. F. Sturgill, K. F. Chua, P. L. Greer, Y. Lin, et al. 2004. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011-2015   DOI   ScienceOn
12 Yang, X. J. 2004. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32: 959-976   DOI   ScienceOn
13 Kouzarides, T. 2000. Acetylation: A regulatory modification to rival phosphorylation. EMBO J. 19: 1176-1179   DOI   ScienceOn
14 Starai, V. J. and J. C. Escalante-Semerena. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol. 340: 1005-1012   DOI   ScienceOn
15 Blander, G. and L. Guarente. 2004. The Sir2 family of protein deacetylases. Annu. Rev. Biochem. 73: 417-435   DOI   ScienceOn
16 Barak, R., K. Prasad, A. Shainskaya, A. J. Wolfe, and M. Eisenbach. 2004. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J. Mol. Biol. 342: 383-401   DOI   ScienceOn
17 Kaiser, C. and S. R. James. 2004. Acetylation of insulin receptor substrate-1 is permissive for tyrosine phosphorylation. BMC Biol. 2: 23   DOI
18 Lahti, R., K. Pohjanoksa, T. Pitkaranta, P. Heikinheimo, T. Salminen, P. Meyer, and J. Heinonen. 1990. A site-directed mutagenesis study on Escherichia coli inorganic pyrophosphatase. Biochemistry 29: 5761-5766   DOI   ScienceOn
19 Barak, R., J. Yan, A. Shainskaya, and M. Eisenbach. 2006. The chemotaxis response regulator CheY can catalyze its own acetylation. J. Mol. Biol. 359: 251-265   DOI   ScienceOn
20 Hubbert, C., A. Guardiola, R. Shao, Y. Kawaguchi, A. Ito, A. Nixon, M. Yoshida, X. F. Wang, and T. P. Yao. 2002. HDAC6 is a microtubule-associated deacetylase. Nature 417: 455-458   DOI   ScienceOn
21 Starai, V. J., I. Celic, R. N. Cole, J. D. Boeke, and J. C. Escalante-Semerena. 2002. Sir2-dependent activation of acetyl- CoA synthetase by deacetylation of active lysine. Science 298: 2390-2392   DOI
22 Cohen, T. and T. P. Yao. 2004. AcK-knowledge reversible acetylation. Sci. STKE 245: 42