Browse > Article

Morphogenetic Behavior of Tropical Marine Yeast Yarrowia lipolytica in Response to Hydrophobic Substrates  

Zinjarde, Smita S. (Institute of Bioinformatics and Biotechnology, University of Pune)
Kale, Bhagyashree V. (Institute of Bioinformatics and Biotechnology, University of Pune)
Vishwasrao, Paresh V. (Institute of Bioinformatics and Biotechnology, University of Pune)
Kumar, Ameeta R. (Institute of Bioinformatics and Biotechnology, University of Pune)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.9, 2008 , pp. 1522-1528 More about this Journal
Abstract
The morphogenetic behavior of a tropical marine Yarrowia lipolytica strain on hydrophobic substrates was studied. Media containing coconut oil or palm kernel oil (rich in lauric and myristic acids) prepared in distilled water or seawater at a neutral pH supported 95% of the cells to undergo a transition from the yeast form to the mycelium form. With potassium laurate, 51 % of the cells were in the mycelium form, whereas with myristate, 32% were in the mycelium form. However, combinations of these two fatty acids in proportions that are present in coconut oil or palm kernel oil enhanced the mycelium formation to 65%. The culture also produced extracellular lipases during the morphogenetic change. The yeast cells were found to attach to the large droplets of the hydrophobic substrates during the transition, while the mycelia were associated with the aqueous phase. The alkane-grown yeast partitioned more efficiently in the hydrophobic phases when compared with the coconut oil-grown mycelia. A fatty acid analysis of the mycelial form revealed the presence of lauric acid in addition to the long-chain saturated and unsaturated fatty acids observed in the yeast form. The mycelia underwent a rapid transition to the yeast form with n-dodecane, a medium-chain aliphatic hydrocarbon. Thus, the fungus displayed a differential behavior towards the two types of saturated hydrophobic substrates.
Keywords
Yarrowia lipolytica; dimorphism; hydrophobic substrates;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Crolla, A. and K. J. Kennedy. 2001. Optimization of citric acid production from Candida lipolytica Y-1095 using n-paraffin. J. Biotechnol. 89: 27-40   DOI   ScienceOn
2 Fickers, P., P. H. Benetti, Y. Wache, A. Marty, S. Mauersberger, M. S. Smit, and J. M. Nicaud. 2005. Hydrophobic substrate utilization by the yeast Yarrowia lipolytica, and its potential applications. FEMS Yeast Res. 5: 527-543   DOI   ScienceOn
3 Gutierrez, J. R. and L. E. Erickson. 1977. Hydrocarbon uptake in hydrocarbon fermentation. Biotechnol. Bioeng. 19: 1331-1349   DOI   ScienceOn
4 Kim, J., S. A. Cheon, S. Park, Y. Song, and J. Y. Kim. 2000. Serum-induced hyphae formation in the dimorphic yeast Yarrowia lipolytica. FEMS Microbiol. Lett. 190: 9-12   DOI   ScienceOn
5 Montet, D., R. Ratomahenina, P. Galzy, M. Pina, and J. Graille. 1985. A study of the influence of the growth media on the fatty acid composition in Candida lipolytica Diddens and Lodder. Biotechnol. Lett. 7: 733-736   DOI
6 Ota, Y., S. Oikawa, Y. Morimoto, and Y. Minoda. 1984. Nutritional factors causing mycelial development of Saccharomycopsis lipolytica. Agric. Biol. Chem. 48: 1933-1940   DOI
7 Papanikolaou, S. and G. Aggelis. 2003 Selective uptake of fatty acids by yeast Yarrowia lipolytica. Eur. J. Lipid Sci. Technol. 105: 651-655   DOI   ScienceOn
8 Perez-Campo, F. M. and A. Dominguez. 2001. Factors affecting the morphogenetic switch in Yarrowia lipolytica. Curr. Microbiol. 43: 429-433   DOI   ScienceOn
9 Mlícková, K., E. Roux, K. Athenstaedt, S. d'Andrea, G. Daum, T. Chardot, and J. M. Nicaud. 2004. Lipid accumulation, lipid body formation, and acyl coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl. Environ. Microbiol. 70: 3918-3924   DOI   ScienceOn
10 McIntyre, M., J. Breum, J. Arnau, and J. Nielsen. 2002. Growth physiology and dimorphism of Mucor circinelloides (syn. racemosus) during submerged batch cultivation. Appl. Microbiol. Biotechnol. 58: 495-502   DOI   ScienceOn
11 Zinjarde, S. S., M. V. Deshpande, and A. Pant. 1998. Dimorphic transition in Yarrowia lipolytica isolated from oil polluted seawater. Mycol. Res. 102: 553-558   DOI   ScienceOn
12 Andreishcheva, E. N., E. P. Isakova, N. N. Sidorov, N. B. Abramova, N. A. Ushakova, G. L. Shaposhnikov, M. I. M. Soares, and R. A. Zvyagilskaya. 1999. Adaptation of salt stress in a salt-tolerant strain of the yeast Yarrowia lipolytica. Biochemistry 64: 1061-1067
13 Winkler, U. K. and M. Stuckmann. 1979. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138: 663-670
14 Papanikolaou, S., L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc. 2002. Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. J. Appl. Microbiol. 92: 737-744   DOI   ScienceOn
15 Papanikolaou, S., I. Chevalot, M. Komaitis, I. Marc, and G. Aggelis. 2002. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl. Microbiol. Biotechnol. 58: 308-312   DOI   ScienceOn
16 Gurr, M. I., J. L. Harwood, and K. N. Frayn. 2002. Lipids as energy stores. In: Lipid biochemistry: An Introduction, pp. 93-126. Blackwell Science, Oxford, U.K
17 Ofek, I., E. Whitnack, and E. H. Beachey. 1983. Hydrophobic interactions of group A streptococci with hexadecane droplets. J. Bacteriol. 154: 139-145
18 Papanikolaou, S., L. Muniglia, I. Chevalot, G. Aggelis, and I. Marc. 2003. Accumulation of a cocoa-butter-like lipid by Yarrowia lipolytica cultivated on agro-industrial residues. Curr. Microbiol. 46: 124-130   DOI   ScienceOn
19 Butinar, S. S., I. Spencer-Martins, A. Oren, and N. Gunde- Cimerman. 2005. Yeast diversity in hypersaline habitats. FEMS Microbiol. Lett. 244: 229-234   DOI   ScienceOn
20 Lee, G. H., J. H. Bae, M. J. Suh, I. H. Kim, C. T. Hou, and H. R. Kim. 2007. New finding and optimal production of a novel extracellular alkaline lipase from Yarrowia lipolytica NRRL Y- 2178. J. Microbiol. Biotechnol. 17: 1054-1057   과학기술학회마을
21 Kawasse, F. M., P. F. Amaral, M. H. M. Rocha-Leão, E. C. Amaral, A. L. Ferreira, and M. A. Z. Coelho. 2003. Morphological analysis of Yarrowia lipolytica under stress conditions through image processing. Bioprocess Biosyst. Eng. 25: 371-375   DOI   ScienceOn
22 Khale-Kumar, A. and M. V. Deshpande. 1993. Possible involvement of cyclic adenosine 3',5'-monophosphate in the regulation of NADP-/NAD-glutamate dehydrogenase ratio and in yeast-mycelium transition of Benjaminiella poitrasii. J. Bacteriol. 175: 6052-6055   DOI
23 Pignede, G., H. J. Wang, F. Fudalej, M. Seman, C. Gaillardin, and J. M. Nicaud. 2000. Autocloning and amplification of LIP2 in Yarrowia lipolytica. Appl. Environ. Microbiol. 66: 3283-3289   DOI   ScienceOn
24 Rodriguez, C. and A. Dominguez. 1984. The growth characteristics of Saccharomycopsis lipolytica: Morphology and induction of mycelium formation. Can. J. Microbiol. 30: 605-612   DOI
25 Tan, K. H. and C. O. Gill. 1985. Batch growth of Saccharomycopsis lipolytica on animal fats. Appl. Microbiol. Biotechnol. 21: 292-298
26 Kim, J. T., S. G. Kang, J. H. Woo, J. H. Lee, B. C. Jeong, and S. J. Kim. 2007. Screening and its potential application of lipolytic activity from a marine environment: Characterization of a novel esterase from Yarrowia lipolytica CL180. Appl. Microbiol. Biotechnol. 74: 820-828   DOI   ScienceOn
27 Moss, C. W., T. Shinoda, and J. W. Samuels. 1982. Determination of cellular fatty acid compositions of various yeasts by gasliquid chromatography. J. Clin. Microbiol. 16: 1073-1079
28 Dominguez, A., E. Ferminan, and C. Gaillardin. 2000. Yarrowia lipolytica: An organism amenable to genetic manipulation as a model for analyzing dimorphism in fungi. Contrib. Microbiol. 5: 151-172   DOI
29 Fickers, P., F. Fudalej, J. M. Nicaud, J. Destain, and P. Thonart. 2005. Selection of new over-producing derivatives for the improvement of extracellular lipase production by the nonconventional yeast Yarrowia lipolytica. J. Biotechnol. 115: 379-386   DOI   ScienceOn
30 Hurtado, C. A. R., J. M. Beckerich, C. Gaillardin, and R. A. Rachubinski. 2000. A Rac homolog is required for induction of hyphal growth in the dimorphic yeast Yarrowia lipolytica. J. Bacteriol. 182: 2376-2386   DOI   ScienceOn
31 Ruiz-Herrera, J. and R. Sentandreu. 2002. Different effectors of dimorphism in Yarrowia lipolytica. Arch. Microbiol. 178: 477-483   DOI   ScienceOn
32 Novotony, C., L. Dolezalova, and J. Lieblova. 1994. Dimorphic growth and lipase production in lipolytic yeasts - Yarrowia lipolytica, Candida rugosa, Torulopsis erbinii, Candida curvata, and Candida guilliermondii. Folia Microbiol. 39: 71-73   DOI   ScienceOn
33 Oswal, N., P. M. Sarma, S. S. Zinjarde, and A. Pant. 2002. Palm oil mill effluent treatment by a tropical marine yeast. Bioresour. Technol. 85: 35-37   DOI   ScienceOn
34 Mauersberger, S., H. J. Wang, C. Gaillardin, G. A. Barth, and J. M. Nicaud. 2001. Insertional mutagenesis in the n-alkane assimilating yeast Yarrowia lipolytica: Generation of tagged mutations in genes involved in hydrophobic substrate utilization. J. Bacteriol. 183: 5102-5109   DOI   ScienceOn