Browse > Article

Inactivation of Listeria monocytogenes in Brine and Saline by Alternating High-Voltage Pulsed Current  

Lee, Mi-Hee (Department of Medical Engineering, Yonsei University College of Medicine)
Han, Dong-Wook (Department of Medical Engineering, Yonsei University College of Medicine)
Woo, Yeon-I. (Department of Medical Engineering, Yonsei University College of Medicine)
Uzawa, Masakazu (Applied Science Co. Ltd.)
Park, Jong-Chul (Department of Medical Engineering, Yonsei University College of Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.7, 2008 , pp. 1274-1277 More about this Journal
Abstract
The inactivating efficiency of alternating high-voltage pulsed (AHVP) current was investigated in brine (20 w/v% NaCl) and saline (0.9 w/v% NaCl) inoculated with $1\times10^7$ cells/ml of Listeria monocytogenes. AHVP current at 12 V with 1 pulse completely inactivated L. monocytogenes in brine within 3 ms, while the bacteria in saline were fully inactivated by 10-pulsed electric treatment at 12 V within the same time. Electron microscopic observation demonstrated substantial structural damage of electrically treated L. monocytogenes in brine. These results suggest that AHVP treatment would be effective for the rapid and complete inactivation of L. monocytogenes in brine or saline solution.
Keywords
Listeria monocytogenes; alternating high-voltage pulsed current; brine; saline; inactivation;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Glass, K. A. and M. P. Doyl. 1989. Fate of Listeria monocytogenes in processed meat products during refrigerated storage. Appl. Environ. Microbiol. 55: 1565-1569
2 Jeong, J., J. Y. Kim, and J. Yoon. 2006. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol. 40: 6117-6122   DOI   ScienceOn
3 ark, J.-C., M. S. Lee, D.-W. Han, D. H. Lee, B. J. Park, I.-S. Lee, M. Uzawa, M. Aihara, and K. Takatori. 2004. Inactivation of Vibrio parahaemolyticus in effluent seawater by alternatingcurrent treatment. Appl. Environ. Microbiol. 70: 1833-1835   DOI   ScienceOn
4 Samelis, J., J. N. Sofos, P. Kendall, and G. C. Smith. 2001. Influence of the natural microbial flora on the acid tolerance response of Listeria monocytogenes in a model system of fresh meat decontamination fluids. Appl. Environ. Microbiol. 67: 2410-2420   DOI   ScienceOn
5 Zimmermann, U. 1986. Electrical breakdown, electropermeabilization and electrofusion. Rev. Physiol. Biochem. Pharmacol. 105: 175-256   DOI
6 Lee, S. H. and J. F. Frank. 1992. Competitive growth and attachment of Listeria monocytogenes and Lactococcus lactis ssp. lactis ATCC 11454. J. Microbiol. Biotechnol. 2: 73-77
7 Miller, A. J., J. E. Call, and B. S. Eblen. 1997. Growth, injury, and survival potential of Yersinia enterocolitica, Listeria monocytogenes, and Staphylococcus aureus in brine chiller conditions. J. Food Prot. 60: 1334-1340   DOI
8 NA, B. K., B. I. Sang, D. W. Park, and D. H. Park. 2005. Influence of electric potential on structure and function of biofilm in wastewater treatment reactor: Bacterial oxidation of organic carbons coupled to bacterial denitrification. J. Microbiol. Biotechnol. 15: 1221-1228   과학기술학회마을
9 Cho, S. Y., B. K. Park, K. D. Moon, and D. H. Oh. 2004. Prevalence of Listeria monocytogenes and related species in minimally processed vegetables. J. Microbiol. Biotechnol. 14: 515-519
10 Muraji, M., W. Tatebe, and H. Berg. 1998. The influence of extracellular alkali and alkaline-earth ions on electropermeation of Saccharomyces cerevisiae. Bioelectrochem. Bioenerg. 46: 293-295   DOI   ScienceOn
11 Gailey, J. K., J. S. Dickson, and W. Dorsa. 2003. Survival of Listeria monocytogenes in a simulated recirculating brine chiller system. J. Food Prot. 66: 1840-1844   DOI
12 Liu, W. K., M. R. W. Brown, and T. S. J. Elliott. 1997. Mechanisms of the bactericidal activity of low amperage electric current. J. Antimicrob. Chemother. 39: 687-695   DOI   ScienceOn
13 Park, J.-C., M. S. Lee, D. H. Lee, B. J. Park, D.-W. Han, M. Uzawa, and K. Takatori. 2003. Inactivation of bacteria in seawater by low-amperage electric current. Appl. Environ. Microbiol. 69: 2405-2408   DOI   ScienceOn
14 Park, S. Y., J.-W. Choi, J. Yeon, M. J. Lee, D. H. Chung, M.-G. Kim, et al. 2005. Predictive modeling for the growth of Listeria monocytogenes as a function of temperature, NaCl, and pH. J. Microbiol. Biotechnol. 15: 1323-1329   과학기술학회마을
15 Taormina, P. J. and L. R. Beuchat. 2001. Survival and heat resistance of Listeria monocytogenes after exposure to alkali and chlorine. Appl. Environ. Microbiol. 67: 2555-2563   DOI   ScienceOn
16 Gomez, N., D. Garcia, I. Alvarez, S. Condon, and J. Raso. 2005. Modelling inactivation of Listeria monocytogenes by pulsed electric fields in media of different pH. Int. J. Food Microbiol. 103: 199-206   DOI   ScienceOn
17 Greer, G. G., F. Nattress, B. Dilts, and L. Baker. 2004. Bacterial contamination of recirculating brine used in the commercial production of moisture-enhanced pork. J. Food Prot. 67: 185-188   DOI
18 Lojewska, Z., D. L. Farkas, B. Ehrenberg, and L. M. Loew. 1989. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys. J. 56: 121-128   DOI   ScienceOn
19 Venkitanarayanan, K. S., G. O. Ezeike, Y. C. Hung, and M. P. Doyle. 1999. Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl. Environ. Microbiol. 65: 4276-4279