Browse > Article

Fermentation Characteristics of Exopolysaccharide-Producing Lactic Acid Bacteria from Sourdough and Assessment of the Isolates for Industrial Potential  

Jung, Seung-Won (Department of Food Science and Technology, Dongguk University)
Kim, Wang-June (Department of Food Science and Technology, Dongguk University)
Lee, Kwang-Geun (Department of Food Science and Technology, Dongguk University)
Kim, Cheol-Woo (Korea Advanced Food Research Institute)
Noh, Wan-Seob (Department of Food Science and Technology, Dongguk University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.7, 2008 , pp. 1266-1273 More about this Journal
Abstract
Lactic acid bacteria (LAB) with antimicrobial activity and high exopolysaccharide (EPS) production ability isolated from sourdough were studied for their fermentation characteristics as potential new starter cultures. The values of pH, titratable acidity, and viable cell counts were $4.06{\pm}0.009-4.50{\pm}0.015,\;0.787{\pm}0.020%-1.172{\pm}0.018%,\;and\;8.78{\pm}0.08-8.98{\pm}0.06$ log CFU/ml, respectively. In order to select probiotics with a high survival rate in the gut, isolates were tested to assess resistance against the artificial gastric acid and bile juice. Viable LAB counts were significantly (p<0.05) affected by the acidity. At pH 2.0, the total declines in the initial bacterial counts were 4.52$\pm$0.07 log for S. thermophilus St-Body-1, >7.98$\pm$0.03 log for E. flavescens DU-10, >7.95$\pm$0.05 log for E. faecium DU-12, and 3.15$\pm$0.06 log for L. amylovorus DU-21. Among the strains, L. amylovorus DU-21 was the only strain that had bile tolerance under simulated gastrointestinal conditions. In order to improve EPS production by L. amylovorus DU-21, the influence of carbon source was studied. When glucose was used as a carbon source, EPS production dramatically increased to 17.19$\pm$0.28 g/l (p<0.05). The maximum cell growth (10.012$\pm$>0.012 log CFU/ml) and EPS production (18.71$\pm$0.19 g/l) were achieved when 15 g/l of glucose was employed as the carbon source.
Keywords
Exopolysaccharides; Lactobacillus amylovorus; probiotic; gastrointestinal stress tolerance; starter culture;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Cerning, J. 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75: 463-472   DOI
2 Damiani, P., M. Gobbetti, L. Cossignani, A. Corsetti, M. S. Simonetti, and J. Rossi. 1996. The sourdough microflora characterization of hetero and homofermentative lactic acid bacteria, yeasts and their interactions on the basis of volatile compounds produced. Lebensmt Wis. Technol. 29: 63-70   DOI   ScienceOn
3 Holzapfel, W. H., P. Haberer, J. Snel, U. Schillinger, and J. H. J. Huis in't Veld. 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol. 41: 85-101   DOI   ScienceOn
4 Hosono, A., J. Lee, A. Ametani, M. Natsume, M. Hirayama, T. Adachi, and S. Kaminogawa. 1997. Characterization of a watersoluble polysaccharide fraction with immunopotentiating activity from Bifidobacterium adolescentis M101-4. Biosci. Biotechnol. Biochem. 61: 312-316   DOI   ScienceOn
5 Jolly, L. 2002. Exploiting exopolysaccharides from lactic acid bacteria. Antonie Van Leeuwenhoek 82: 367-374   DOI   ScienceOn
6 Nakajima, H., T. Toba, and S. Toyoda. 1995. Enhancement of antigen-specific antibody production by extracellular slime products from slime-forming Lactococcus lactis subspecies cremoris SBT 0495 in mice. Int. J. Food Microbiol. 25: 153-158   DOI   ScienceOn
7 Pereira, D. I., A. L. McCartney, and G. R. Gibson. 2003. An in vitro study of the probiotic potential of a bile salt hydrolyzing Lactobacillus fermentum strain, and determination of its cholesterollowering properties. Appl. Environ. Microbiol. 69: 4743-4752   DOI   ScienceOn
8 Rohm, H. and W. Schmid. 1993. Influence of dry matter fortification of flow properties of yogurt. 1. Evaluation of flow curves. Milchwissenschaft 48: 556-560
9 Shah, N. P. 2007. Functional cultures and health benefits. Int. Dairy J. 17: 1267-1277
10 Sikkema, J. and T. Oba. 1998. Extracellular polysaccharides of lactic acid bacteria. Snow Brand R&D Rep. 107: 1-31
11 Simsek, O., A. H. Con, and S. Tulumo lu. 2006. Isolating lactic starter cultures with antimicrobial activity for sourdough processes. Food Control 17: 263-270   DOI   ScienceOn
12 Yoon, K. Y., E. E. Woodams, and Y. D. Hang. 2006. Production of probiotic cabbage juice by lactic acid bacteria. Bioresour. Technol. 97: 1427-1430   DOI   ScienceOn
13 Ziemer, C. J. and G. R. Gibson. 1998. An overview of probiotics, prebiotics and synbiotics in the functional food concept: Perspectives and future strategies. Int. Dairy J. 8: 473-479   DOI   ScienceOn
14 Salminen, S. and A. von Wright. 1998. Current probiotics - safety assured? Microbial Ecol. Health Dis., 10: 68-77   DOI   ScienceOn
15 Jung, S. W., W. J. Kim, K. G. Lee, and W. S. Noh. 2007. Isolation and identification of lactic acid bacteria from sourdough with high exopolysaccharide production ability. J. Microbiol. Biotechnol. [In review]
16 Sebastiani, H. and G. Zelger. 1998. Texture formation by thermophilic lactic acid bacteria. Milchwissenschaft 53: 15-20
17 Cerning, J. and V. M. E. Marshall. 1999. Exopolysaccharides produced by the dairy lactic acid bacteria. Recent Results Develop. Microbiol. 3: 195-209
18 De Vuyst, L., L. Avonts, B. Hoste, M. Vancanneyt, J. Swings, P. Neysens, and R. Callewaert. 2004. The lactobin A and amylovorin L471 encoding genes are identical, and their distribution seems to be restricted to the species Lactobacillus amylovorus that is of interest for cereal fermentations. Int. J. Food Microbiol. 90: 93-106   DOI   ScienceOn
19 Kitazawa, H., T. Itoh, Y. Tomioka, M. Mizugaki, and T. Yamaguchi. 1996. Induction of IFN-$\gamma$ and IL-1$\alpha$ production in macrophages stimulated with phosphopolysaccharide produced by Lactococcus lactis ssp. cremoris. Int. J. Food Microbiol. 31: 99-106   DOI   ScienceOn
20 Sanders, M. E. and J. H. in't Veld. 1999. Bringing a probioticcontaining functional food to the market: Microbiological, product, regulatory and labeling issues. Antonie van Leeuwenhoek 76: 293-315   DOI
21 Ricciardi, A. and F. Clementi. 2000. Exopolysaccharides from lactic acid bacteria: Structure, production and technological applications. Italian J. Food Sci. 1: 23-45
22 Grant, C. and S. Salminen. 1998. The potential of Propionibacterium ssp. ss probiotics, pp. 588-603. In S. Salminen and A. von Wright (eds.), Lactic Acid Bacteria. Microbiological and Functional Aspects. Marcel Dekker Inc., New York, U.S.A
23 Conway, P. L., S. L. Gorbach, and B. R. Goldin. 1987. Survival of lactic acid bacteria in the human stomach and adhesion to intestinal cells. J. Dairy Sci. 70: 1-12   DOI   ScienceOn
24 De Vuyst, L., F. De Vin, F. Vaningelgem, and B. Degeest. 2001. Recent developments in the biosynthesis and applications of heteropolysaccharides from lactic acid bacteria. Int. Dairy J. 11: 687-707   DOI   ScienceOn
25 Vogel, R. F., R. Knorr, M. R. A. Muller, U. Steudel, M. G. Ganzle, and M. A. Ehrmann. 1999. Non-dairy lactic fermentations: The cereal world. Antonie Van Leeuwenhoek 76: 403-411   DOI   ScienceOn
26 Bouzar, F., J. Cerning, and M. Desmazeaud. 1997. Exopolysaccharide production and texture-promoting abilities of mixed-strain starter cultures in yoghurt production. J. Dairy Sci. 80: 2310-2317   DOI   ScienceOn
27 Henriksson, R., P. Bergstrom, L. Franzen, F. Lewin, and G.. Wagenius. 1999. Aspects of reducing gastrointestinal adverse effects associated with radiotherapy. Acta Oncol. 38: 226-231
28 Lee, W. J. and J. A. Lucey. 2004. Structure and physical properties of yoghurt gels: Effect of inoculation rate and incubation temperature. J. Dairy Sci. 87: 3153-3164   DOI   ScienceOn
29 Monchois, V., R. M. Willwmot, and P. Monsan. 1999. Glucansucrases: Mechanism of action and structure-function relationships. FEMS Microbiol. Rev. 23: 131-151   DOI
30 A.O.A.C. 1995. Official Methods of Analysis, 15th Ed. p. 988, Association of Official Analytical Chemist, Washington. D.C., U.S.A
31 Christiansen, P. S., A. I. M. R. Madeira, and D. Edelstein. 1999. The use of ropy milk as stabilizer in the manufacture of ice cream. Milchwissenschaft 54: 138-140
32 Gilliland, S. E., T. E. Staley, and L. J. Bush. 1984. Importance of bile tolerance of Lactobacillus acidophilus used as dietary adjunct. J. Dairy Sci. 67: 3045-3051   DOI   ScienceOn
33 Lee, Y. K. and S. Salminen. 1995. The coming age of probiotics. Trends Food Sci. Technol. 6: 241-245   DOI   ScienceOn
34 Cerning, J. 1990. Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113-130   DOI
35 Naidu, A. S., W. R. Bidlack, and R. A. Clemens. 1999. Probiotic spectra of lactic acid bacteria (LB). Crit. Rev. Food Sci. Nutr. 38: 13-126
36 Laws, A. P. and V. M. Marshall. 2001. The relevance of exopolysaccharides to the rheological properties in milk fermented with ropy strains of lactic acid bacteria. Int. Dairy J. 11: 709-721   DOI   ScienceOn
37 Fooks, L. J., R. Fuller, and G. R. Gibson. 1999. Prebiotics, probiotics and human gut microbiology. Int. Dairy J. 9: 53-61   DOI   ScienceOn
38 Rohm, H. and A. Kovac. 1994. Effects of starter cultures on linear viscoelastic and physical properties of yogurt gels. J. Texture Studies 25: 311-329   DOI   ScienceOn
39 Crescenzi, V. 1995. Microbial polysaccharides of applied interest: On-going research activities in Europe. Biotechnol. Progress 11: 251-259   DOI   ScienceOn
40 Gilliland, S. E. and D. K. Walker. 1990. Factors to consider when selecting a dietary adjunct to produce a hypocholesteroleric effect in humans. J. Dairy Sci. 73: 905-911   DOI   ScienceOn
41 Ruijssenaars, H. J., F. Stingele, and S. Hartmans. 2000. Biodegradability of food-associated extracellular polysaccharides. Curr. Microbiol. 40: 194-199   DOI   ScienceOn
42 Yang, Z., E. Huttunen, M. Staaf, G. Widmalm, and H. Tenhu. 1999. Separation, purification and characterization of extracellular polysaccharides produced by slime-forming Lactococcus lactis ssp. cremoris strains. Int. Dairy J. 9: 631-638   DOI   ScienceOn
43 Hood, S. K. and E. A. Zottola. 1988. Effect of low pH on the ability of Lactobacillus acidophilus to survive and adhere to human intestinal cells. J. Food Sci. 53: 1514-1516   DOI
44 Leroy, F., T. De Winter, T. Adriany, P. Neysens, and L. De Vuyst. 2006. Sugars relevant for sourdough fermentation stimulate growth of and bacteriocin production by Lactobacillus amylovorus DCE 471. Int. J. Food Microbiol. 112: 102-111   DOI   ScienceOn
45 Gobbetti, M., A. Corsetti, and J. Rossi. 1994. The sourdough microflora. Evolution of soluble carbohydrates during the sourdough fermentation. Microbiol. Aliments Nutr. 12: 9-15
46 Havennar, R. and J. H. J. Husis. 1992. Probiotics; A general view, pp. 151-170. In B. J. B. Wood (ed.), The Lactic Acid Bacteria in Health and Disease. Elsevier Press, London, U.K
47 Prasad, J., H. Gill, J. Smart, and P. K. Gopal. 1998. Selection and characterization of Lactobacillus and Bifidobacterium strains for use as probiotics. Int. Dairy J. 8: 993-1002   DOI   ScienceOn
48 Phillippe, D. and M. Beat. 2001. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 11: 759-768   DOI   ScienceOn
49 Coeuret, V., M. Gueguen, and J. P. Vernoux. 2004. Numbers and strains of lactobacilli in some probiotic products. Int. J. Food Microbiol. 97: 147-156   DOI   ScienceOn
50 Kang, H. M., I. S. Son, Y. S. Um, and C. I. Chung. 1999. Comparison of exopolysaccharide producing lactic acid bacteria isolated from fermented foods. I. A study on the availability of carbon sources for exopolysaccharide production by Streptococcus thermophilus and Lactobacillus ssp. Kor. J. Food Sci. Ani. Resour. 19: 121-126