Browse > Article

Biotransformation of Ginsenoside Rb1, Crocin, Amygdalin, Geniposide, Puerarin, Ginsenoside Re, Hesperidin, Poncirin, Glycyrrhizin, and Baicalin by Human Fecal Microflora and Its Relation to Cytotoxicity Against Tumor Cells  

Kim, Young-Suk (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University)
Kim, Jung-Jin (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University)
Cho, Ki-Ho (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University)
Jung, Woo-Sang (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University)
Moon, Sang-Kwan (College of Oriental Medicine and Department of Pharmaceutical Science, Kyung Hee University)
Park, Eun-Kyung (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University)
Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.6, 2008 , pp. 1109-1114 More about this Journal
Abstract
To understand the role of intestinal microflora in the biological effect of functional herbs, which have been used in Korea, Japan, and China as traditional medicines, and suggest new bioactive compounds transformed from herbal constituents, the metabolic activities of the functional herb components (ginsenoside Rb1, crocin, amygdalin, geniposide, puerarin, ginsenoside Re, poncirin, hesperidin, glycyrrhizin, and baicalin) toward their bioactive compounds (compound K, crocetin, benzaldehyde, genipin, daidzein, ginsenoside Rh1, ponciretin, hesperetin, 18b-glycyrrhetic acid, and baicalein) were measured in fecal specimens. The metabolic activities of these components were $882.7{\pm}814.5$, $3,938.1{\pm}2,700.8$, $2,375.5{\pm}913.7$, $1,179.4{\pm}795.7$, $24.6{\pm}10.5$, $11.4{\pm}10.8$, $578.8{\pm}206.1$, $1,150.0{\pm}266.1$, $47.3{\pm}58.6$, and $12,253.0{\pm}6,527.6\;{\mu}mol/h/g$, respectively. No differences were found in the metabolic activities of the tested components between males and females, although these metabolic activities between individuals are extensively different. The metabolites of functional herb components showed more potent cytotoxicity against tumor cells than nonmetabolites. These findings suggest that intestinal microflora may activate the pharmacological effect of herbal food and medicines and must be the biocatalytic converter for the transformation of herbal components to bioactive compounds.
Keywords
Intestinal micro flora; metabolism; functional herb; cytotoxicity; biotransformation;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 13  (Related Records In Web of Science)
연도 인용수 순위
1 Akao, T., H. Kida, M. Kanaoka, M. Hattori, and K. Kobashi. 1998. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J. Pharm. Pharmacol. 50: 1155-1160   DOI   ScienceOn
2 Cha, K. E. and H. Myung 2007. Cytotoxic effects of nanoparticles assessed in vitro and in vivo. J. Microbiol. Biotechnol. 17: 1573-1578   과학기술학회마을
3 Goldin, B. R., L. Swenson, J. Dwyer, M. Sexon, and S. L. Gorbach. 1980. Effect of diet and Lactobacillus acidophilus supplements on human fecal bacterial enzymes. J. Natl. Cancer Inst. 64: 255-261   DOI
4 Kim, D.-H. 2002. Herbal medicines are activated by intestinal microflora. Nat. Prod. Sci. 8: 35-43
5 Kobashi, K., H. Nakata, H. Takebe, and K. Terasawa. 1984. Relation of intestinal bacteria to pharmacological effect of glycosides. Wakan-iyaku-kaishi 1: 166-167
6 Lee, I. A., J. H. Lee, N. I. Baek, and D. H. Kim. 2005. Antihyperlipidemic effect of crocin isolated from the fructus of Gardenia jasminoides and its metabolite crocetin. Biol. Pharm. Bull. 28: 2106-2110   DOI   ScienceOn
7 Ling, W. H., R. Korpela, H. Mykkanen, S. Salminen, and O. Hanniinen. 1994. Lactobacillus strain GG supplementation decreases colonic hydrolytic and reductive enzyme activities in healthy female adults. J. Nutr. 124: 18-23   DOI
8 Park, S. H., E. K. Park, and D. H. Kim. 2005. Passive cutaneous anaphylaxis-inhibitory activity of flavanones from Citrus unshiu and Poncirus trifoliate. Planta Med. 71: 24-27   DOI   ScienceOn
9 Reddy, B. S., D. Hanson, S. Manar, L. Mathews, M. Abaschnig, C. Sharma, and B. Simi. 1980. Effect of high fat, high-beef diet and of mode of cooking of beef in the diet on fecal bacterial enzymes and fecal bile acids and neutral sterols. J. Nutr. 110: 1880-1887   DOI
10 Shin, Y. W., E. A. Bae, M. J. Han, and D. H. Kim. 2006. Metabolism of ginsenoside Rg5, a main constituent isolated from red ginseng, by human intestinal microflora and their antiallergic effect. J. Microbiol. Biotechnol. 16: 1791-1798   과학기술학회마을
11 Wakabayashi, C., H. Hasegawa, J. Murata, and I. Saiki. 1998. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol. Res. 9: 411-417
12 Yang, L., T. Akao, and K. Kobashi. 1995. Purification and characterization of a geniposide-hydrolyzing beta-glucosidase from Eubacterium sp. A-44, a strict anaerobe from human feces. Biol. Pharm. Bull. 18: 1175-1178   DOI   ScienceOn
13 Kim, D.-H., E. A. Jung, I. S. Sohng, J. A. Han, T. H. Kim, and M. J. Han. 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res. 21: 17-23   DOI
14 Akao, T. 2000. Differences in the metabolism of glycyrrhizin, glycyrrhetic acid and glycyrrhetic acid monoglucuronide by human intestinal flora. Biol. Pharm. Bull. 23: 1418-1423   DOI   ScienceOn
15 Bae, E. A., S. Y. Park, and D.-H. Kim. 2000. Constitutive betaglucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol. Pharm. Bull. 23: 1481-1485   DOI   ScienceOn
16 Ikeda, N., Y. Saito, J. Shimazu, A. Ochi, J. Mizutani, and J. Watanabe. 1994. Variations in concentrations of bacterial metabolites, enzyme activities, moisture, pH and bacterial composition between and within individuals in faeces of seven healthy adults. J. Appl. Bacteriol. 77: 185-194   DOI
17 Bae, E. A., J. Shin, and D.-H. Kim. 2005. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol. Pharm. Bull. 28: 1903-1908   DOI   ScienceOn
18 Lee, D. K., Y. S. Kim, C. N. Ko, K. H. Cho, H. S. Bae, K. S. Lee, J. J. Kim, E. K. Park, and D. H. Kim. 2003. Fecal metabolic activities of herbal components to bioactive compounds. Arch. Pharm. Res. 25: 165-169   DOI
19 Mykkanen, H., K. Laiho, and S. Salminen. 1998. Variations in fecal bacterial enzyme activities and associations with bowel function and diet in elderly subjects. J. Appl. Microbiol. 85: 37-41   DOI   ScienceOn
20 Yim, J. S., Y. S. Kim, S. K. Moon, K. H. Cho, H. S. Bae, J. J. Kim, E. K. Park, and D. H. Kim. 2004. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull. 27: 1580-1593   DOI   ScienceOn
21 Akao, T., M. Kanaoka, and K. Kobashi. 1998. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration -- measurement of compound K by enzyme immunoassay. Biol. Pharm. Bull. 21: 245-249   DOI   ScienceOn
22 Rummey, C. J. and I. R. Rowland. 1992. In vivo and in vitro models of the human colonic flora. Crit. Rev. Food Sci. Nutr. 31: 299-331   DOI   ScienceOn
23 Taiming, L. and J. Xuehua. 2006. Investigation of the absorption mechanisms of baicalin and baicalein in rats. J. Pharm. Sci. 95: 1326-1333   DOI   ScienceOn
24 Ameer, B., R. A. Weintraub, J. V. Johnson, R. A. Yost, and R. L. Rouseff. 1996. Flavone absorption after naringin, hesperidin and Citrus administration. Clin. Pharmacol. Therap. 60: 34-40   DOI   ScienceOn
25 Bae, E. A., M. J. Han, and D.-H. Kim. 1999. In vitro anti- Helicobacter pylori activity of some flavonoids and their metabolites. Planta Med. 65: 442-443   DOI   ScienceOn
26 Bae, E. A., N. Y. Kim, M. J. Han, M. K. Choo, and D.-H. Kim. 2003. Transformation of ginsenosides to compound K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechnol. 13: 9-14
27 Erlund, I., E. Meririnne, G. Alfthan, and A. Aro. 2001. Plasma kinetics and urinary excretion of the flavanones naringenin and hesperetin in humans after ingestion of orange juice and grapefruit juice. J. Nutr. 131: 235-241   DOI
28 Kobashi, K. and T. Akao. 1997. Relation of intestinal bacteria to pharmacological effect of glycosides. Biosci. Microflora 16: 1-7   DOI
29 Park, E. K., J. Shin, E. A. Bae, Y. C. Lee, and D. H. Kim. 2006. Intestinal bacteria activate estrogenic effect of main constituents puerarin and daidzin of Pueraria thunbergiana. Biol. Pharm. Bull. 29: 2432-2435   DOI   ScienceOn
30 Simon, S. I. and S. I. Gorbach. 1986. The human intestinal microflora. Digest. Dis. Sci. 31: 147S-162S   DOI   ScienceOn
31 Shin, Y.-W., E. A. Bae, B. Lee, S. W. Min, N. I. Baek, S. N. Ryu, H. G. Chung, and D. H. Kim. 2006. Effect of fermented lactic acid bacteria on antiallergic effect of Artemisia princeps pampanini. J. Microbiol. Biotechnol. 16: 1464-1467   과학기술학회마을
32 Mallet, A. K., I. R. Rowland, C. A. Bearne, J. C. Flynn, B. T. Fehilly, Y. S. Udeen, and M. J. G. Farthing. 1988. Effect of dietary supplements of apple pectin, wheat bran or fat on the enzyme activity of the human fecal flora. Microb. Ecol. Health Dis. 1: 23-39   DOI