Browse > Article

Molecular Characterization of Burkholderia Strains Isolated from Rice Cultivars (Oryza sativa L.) for Species Identification and Phylogenetic Grouping  

Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University)
Poonguzhali, Selvaraj (Department of Agricultural Chemistry, Chungbuk National University)
Kwon, Soon-Wo (Korean Agricultural Cultural Collection (KACC), Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration)
Song, Myung-Hee (Korean Agricultural Cultural Collection (KACC), Microbial Genetics Division, National Institute of Agricultural Biotechnology, Rural Development Administration)
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.6, 2008 , pp. 1005-1010 More about this Journal
Abstract
The genus Burkholderia consists of extremely versatile bacteria that occupy diverse niches and are commonly encountered in the rhizosphere of crop plants. In this study, we characterized three plant growth promoting strains assigned as Burkholderia sp. using biochemical and molecular characterization. The Burkholderia spp. strains CBMB40, CBPB-HIM, and CBPB-HOD were characterized using biochemical tests, BIOLOG carbon substrate utilization, fatty acid methyl ester analysis, analysis of recA gene sequences, and DNA-DNA hybridization. The results from these studies indicated that the strains CBMB40, CBPB-HIM, and CBPB-HOD can be assigned under Burkholderia vietnamiensis, Burkholderia ubonensis, and Burkholderia pyrrocinia, respectively.
Keywords
Burkholderia; DNA-DNA hybridization; 16S rDNA sequence; recA gene;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Estrada-de los Santos, P., R. Bustillos-Cristales, and J. Caballero-Mellado. 2001. Burkholderia, a genus rich in plantassociated nitrogen fixers with wide environmental and geographic distribution. Appl. Environ. Microbiol. 67: 2790-2798   DOI   ScienceOn
2 Higgins, D. G., A. J. Bleasby, and R. Fuchs. 1992. CLUSTAL V: Improved software for multiple sequence alignment. CABIOS 8: 189-191
3 Schwyn, B. and J. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Chem. 160: 47-56
4 Payne, G. W., A. Ramette, H. L. Rose, A. J. Weightman, T. H. Jones, J. M. Tiedje, and E. Mahenthiralingam. 2006. Application of a recA gene-based identification approach to the maize rhizosphere reveals novel diversity in Burkholderia species. FEMS Microbiol. Lett. 259: 126-132   DOI   ScienceOn
5 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
6 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120   DOI
7 Gillis, M., V. Tran Van, R. Bardin, M. Goor, P. Hebbar, A. Willems, P. Segers, K. Kerster, T. Heulin, and M. P. Fernandez. 1995. Polyphasic taxonomy in the genus Burkholderia leading to an emended description of the genus and proposition of Burkholderia vietnamiensis sp. nov. for N2-fixing isolates from rice in Vietnam. Int. J. Syst. Bacteriol. 45: 274-289   DOI   ScienceOn
8 Mahenthiralingam, E., A. Baldwin, and P. Vandamme. 2002. Burkholderia cepacia complex infection in patients with cystic fibrosis. J. Med. Microbiol. 51: 533-538   DOI
9 Jung, S. J., K. H. Jang, E. H. Sihn, S. K. Park, and C. H. Park. 2005. Characteristics of sulfur oxidation by a newly isolated Burkholderia spp. J. Microbiol. Biotechnol. 15: 716-721   과학기술학회마을
10 Reis, V. M., P. Estrada-de los Santos, S. Tenorio-Salgado, J. Vogel, M. Stoffels, S. Guyon, P. Mavingui, V. L. D. Baldani, M. Schmid, J. I. Baldani, J. Balandreau, A. Hartmann, and J. Caballero-Mellado. 2004. Burkholderia tropica sp. nov., a novel nitrogen-fixing, plant-associated bacterium. Int. J. Syst. Bacteriol. 54: 2155-2162   DOI
11 Compant, S., B. Reiter, A. Sessitsch, J. Nowak, C. Clement, and E. A. Barka. 2005. Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl. Environ. Microbiol. 71: 1685-1693   DOI   ScienceOn
12 Li, W., D. P. Roberts, S. L. F. Meyer, S. Lohrke, R. D. Lumdsen, and K. P. Hebbar. 2002. Broad spectrum anti-biotic activity and disease suppression by the potential biocontrol agent Burkholderia ambifaria BC-F. Crop Prot. 21: 29-135
13 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positionspecific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI   ScienceOn
14 Daubaras, D. L., C. E. Danganan, A. Hubner, R. W. Ye, W. Hendrickson, and A. M. Chakrabarty. 1996. Biodegradation of 2,4,5-trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: Evolutionary insight. Gene 179: 1-8   DOI
15 Payne, G. W., P. Vandamme, S. H. Morgan, J. J. LiPuma, T. Coenye, A. J. Weightman, T. H. Jones, and E. Mahenthiralingam. 2005. Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl. Environ. Microbiol. 71: 3917-3927   DOI   ScienceOn
16 Seldin, L. and D. Dubnau. 1985. Deoxyribonucleic acid homology among Bacillus polymyxa, Bacillus macerans, Bacillus azotofixans, and other nitrogen-fixing Bacillus strains. Int. J. Syst. Bacteriol. 35: 151-154   DOI
17 Shaharoona, B., G. M. Jamro, Z. A. Zahir, M. Arshad, and K. S. Memon. 2007. Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.). J. Microbiol. Biotechnol. 17: 1300-1307   과학기술학회마을
18 Lee, C. H., M. W. Kim, H. S. Kim, J. H. Ahn, Y. S. Yi, K. R. Kang, Y. D. Yoon, G. J. Choi, K. Y. Cho, and Y. H. Lim. 2006. An antifungal property of Burkholderia ambifaria against phytopathogenic fungi. J. Microbiol. Biotechnol. 16: 465-468   과학기술학회마을
19 Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2007. Quorumsensing signals produced by plant-growth promoting Burkholderia strains under in vitro and in planta conditions. Res. Microbiol. 158: 287-294   DOI   ScienceOn
20 Vandamme, P., B. Holmes, M. Vancanneyt, T. Coenye, B. Hoste, R. Coopman, H. Revets, S. Lauwers, M. Gillis, K. Kersters, and J. R. Govan. 1997. Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int. J. Syst. Bacteriol. 47: 1188-1200   DOI   ScienceOn
21 Estrada, P., P. Mavingui, B. Cournoyer, F. Fontaine, J. Balandreau, and J. Caballero-Mellado. 2002. A N2-fixing endophytic Burkholderia sp. associated with maize plants cultivated in Mexico. Can. J. Microbiol. 48: 285-294   DOI   ScienceOn
22 Kumar, S., K. Tamura, and M. Nei. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform. 5: 150-163   DOI   ScienceOn
23 Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2006. Cultivation-dependent characterization of rhizobacterial communities from field grown Chinese cabbage Brassica campestris ssp. pekinensis and screening of potential plant growth promoting bacteria. Plant Soil 286: 167-180   DOI   ScienceOn
24 He, X. S. and C. Fuqua. 2006. Rhizosphere communication: Quorum sensing by the rhizobia. J. Microbiol. Biotechnol. 16: 1661-1677   과학기술학회마을
25 Laurent, P., L. Buchon, J. F. Guespin-Michel, and N. Orange. 2000. Production of pectate lyases and cellulases by Chryseomonas luteola strain MFCL0 depends on the growth temperature and the nature of the culture medium: Evidence for two critical temperatures. Appl. Environ. Microbiol. 66: 1538-1543   DOI   ScienceOn
26 Vial, L., M. C. Groleau, V. Dekimpe, and E. Déziel. 2007. Burkholderia diversity and versatility: An inventory of the extracellular products. J. Microbiol. Biotechnol. 17: 1407-1429   과학기술학회마을
27 Lee, D. S., M. W. Lee, S. H. Woo, and J. M. Park. 2005. Effects of salicylate and glucose on biodegradation of phenanthrene by Burkholderia cepacia PM07. J. Microbiol. Biotechnol. 15: 859- 865   과학기술학회마을