Browse > Article

Identification and Characterization of a New Strain of the Unicellular Green Alga Dunaliella salina (Teod.) from Korea  

Polle, Jurgen E.W. (Department of Biology, Brooklyn College of CUNY)
Struwe, Lena (Department of Ecology, Evolution, and Natural Resources, Rutgers University - Cook College)
Jin, Eon-Seon (Department of Life Science, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.5, 2008 , pp. 821-827 More about this Journal
Abstract
The unicellular green alga Dunaliella salina is a halotolerant eukaryotic organism. Its halophytic properties provide an important advantage for open pond mass cultivation, since D. salina can be grown selectively. D. salina was originally described by E. C. Teodoresco in 1905. Since that time, numerous isolates of D. salina have been identified from hypersaline environments on different continents. The new Dunaliella strain used for this study was isolated from the salt farm area of the west coastal side of South Korea. Cells of the new strain were approximately oval- or pear-shaped (approximately $16-24\;{\mu}m$ long and $10-15\;{\mu}m$ wide), and contained one pyrenoid, cytoplasmatic granules, and no visible eyespot. Although levels of $\beta$-carotene per cell were relatively low in cells grown at salinities between 0.5 to 2.5 M NaCl, cells grown at 4.5 M NaCl contained about a ten-fold increase in cellular levels of $\beta$-carotene, which demonstrated that cells of the new Korean strain of Dunaliella can overaccumulate $\beta$-carotene in response to salt stress. Analysis of the ITS1 and ITS2 regions of the new Korean isolate showed that it is in the same clade as D. salina. Consequently, based on comparative cell morphology, biochemistry, and molecular phylogeny, the new Dunaliella isolate from South Korea was classified as D. salina KCTC10654BP.
Keywords
Green alga; Dunaliella salina$\beta$-carotene;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Cifuentes, A. S., M. Gonzales, and O. Parra. 1996. The effect of salinity on the growth and carotenogenesis in two Chilean strains of Dunaliella salina Teodoresco. Biol. Res. 29: 227-236
2 Jin, E. S., C. G. Lee, and J. E. W. Polle. 2006. Secondary carotenoids in Haematococcus pluvialis (Chlorophyceae); biosynthesis, regulation and biotechnology. J. Microbiol. Biotechnol. 16: 821-831   과학기술학회마을
3 Olmos-Soto, J., J. Paniagua-Michel, R. Contreras, and L. Trujillo. 2002. Molecular identification of $\beta$-carotene hyperproducing strains of Dunaliella from saline environments using species-specific oligonucleotides. Biotechnol. Lett. 24: 365-369   DOI   ScienceOn
4 Coleman, A. W. 2007. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucl. Acids Res. 35: 3322-3329   DOI
5 Leonardi, P. I. and E. J. Caceres. 1994. Comparative analysis of the fine structure of young and adult individuals of Dunaliella salina (Polyblepharidaceae, Chlorophyceae) with emphasis on the flagella apparatus. J. Phycol. 30: 642-653   DOI   ScienceOn
6 Masjuk, N. P. 1972. On phylogeny and taxonomy of the genus Dunaliella Teod. Ukr. Bot. Zh. 29: 744-749
7 Masjuk, N. P. 1973. Morfologija, sistemetica, ekologija, geograficeskoe, rasprostranenie roda Dunaliella Teod. Naukova Dumka, Kiev, p. 244
8 Ginzburg, M. 1987. Dunaliella: A green alga adapted to salt. Adv. Bot. Res. 14: 93-103
9 Coleman, A. W. and J. C. Mai. 1997. The internal transcribed spacer 2 exhibits a common secondary structure in green algae and flowering plants. J. Mol. Evol. 44: 258-271   DOI   ScienceOn
10 Alvarez, I. and J. F. Wendel. 2003. Ribosomal ITS sequences and plant phylogenetic inference. Mol. Phylogen. Evol. 29: 417-434   DOI   ScienceOn
11 Preisig, H. R. 1992. Morphology and taxonomy, pp. 1-15. In M. Avron and A. Ben-Amotz (eds.). Dunaliella: Physiology, Biochemistry, and Biotechnology. CRC Press, Boca Raton, U.S.A
12 Gomez, P. I., A. Barriga, A. S. Cifuentes, and M. A. Gonzalez. 2003. Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) Chlorophyta. Biol. Res. 36: 185-192
13 Farris, J. S. 1989. The retention index and rescaled consistency index. Cladistics 5: 417-419   DOI
14 Ben-Amotz, A. and M. Avron. 1983. On the factors which determine massive $\beta$-carotene accumulation in the halotolerant alga Dunaliella bardawil. Plant Physiol. 72: 593-597   DOI   ScienceOn
15 Cifuentes, A. S., M. Gonzales, M. Conejeros, V. Dellarossa, and O. Parra. 1992. Growth and carotenogenesis in eight strains of Dunaliella salina Teodoresco from Chile. J. Appl. Phycol. 4: 111-118   DOI
16 Coleman, A. W., R. M. Preparata, B. Mehrotra, and J. C. Mai. 1998. Derivation of the secondary structure of the ITS-1 transcript in Volvocales and its taxonomic correlations. Protist 149: 135-146   DOI   ScienceOn
17 Gonzalez, M. A., P. I. Gomez, and R. Montoya. 1999. Comparison of PCR-RFLP analysis of the ITS region with morphological criteria of various strains of Dunaliella. J. Appl. Phycol. 10: 573-580   DOI   ScienceOn
18 Araneda, P., I. Tapia, and B. Gomez-Silvia. 1992. Microalgas del Norte de Chile II. Cultivo en medios de bajo costo de dos cepas de Dunaliella salina (Teodoresco, 1905) natives del desierto de Atacama. Estud. Oceanol. 11: 53-59
19 Lerche, W. 1937. Untersuchungen uber Entwicklung und Fortpflanzung in der Gattung Dunaliella. Arch Protistenkd 88: 236-268
20 Teodoresco, E. C. 1905. Organisation et developpement du Dunaliella. nouveau genre de Volvocacee-Polyblepharidee. Beih. Bot. Centralbl. Bd. 18: Abt1
21 Gonzalez, M. A., A. W. Coleman, P. I. Gomez, and R. Montoya. 2001. Phylogenetic relationship among various strains of Dunaliella (Chlorophyceae) based on nuclear ITS rDNA sequences. J. Phycol. 37: 604-611   DOI   ScienceOn
22 Nixon, K. 2002. WinCada ver. 1.00.08
23 Farris, J. S., A. V. Albert, M. Källersjo, D. Lipscomb, and A. G. Kluge. 1996. Parsimony jackknifing outperforms neighbor-joining. Cladistics 12: 99-124   DOI   ScienceOn
24 Coleman, A. W. 2003. ITS2 is a double edged tool for eukaryote evolutionary comparisons. Trends Genet. 19: 370-375   DOI   ScienceOn
25 Feliner, G. N. and J. A. Rossello. 2007. Better the devil you know? Guidelines for insightful utilization of nrDNA ITS in species-level evolutionary studies in plants. Mol. Phylogen. Evol. 44: 911-919   DOI   ScienceOn
26 Goloboff, P. 2002. NONA ver 2.0
27 Gomez, P. I. and M. A. Gonzalez. 2001. Genetic polymorphism in eight Chilean strains of the carotenogenic microalga Dunaliella salina Teodoresco (Chlorophyta). Biol. Res. 34: 23-30
28 Chin, H. S., F. Breidt, H. P. Fleming, W.-C. Shin, and S.-S. Yoon. 2006. Identifications of predominant bacterial isolates from the fermenting Kimchi using ITS-PCR and partial 16s rDNA sequences analysis. J. Microbiol. Biotechnol. 16: 68-76   과학기술학회마을
29 Pick, U., L. Karni, and M. Avron. 1986. Determination of ion content and ion fluxes in the halotolerant alga Dunaliella salina. Plant Physiol. 85: 195-198
30 Ben-Amotz, A., A. Katz, and M. Avron. 1982. Accumulation of $\beta$-carotene in halotolerant algae: Purification and characterization of $\beta$-carotene-rich globules from Dunaliella bardawil (Chlorophyceae). J. Phycol. 18: 529-537   DOI
31 Hamburger, C. 1905. Zur Kenntnis der Dunaliella salina und einer Amobe aus Salinenwasser von Cagliari. Arch Protistenkd 6: 111-130
32 Loeblich, L. A. 1982. Photosynthesis and pigments influenced by light intensity and salinity in the halophile Dunaliella salina (Chlorophyta). J. Mar. Biol. Assoc. UK 62: 493-508   DOI