Browse > Article

Chemical Composition and Antimicrobial Activity of Essential Oil from Cones of Pinus koraiensis  

Lee, Jeong-Ho (Korea National Aboretum)
Yang, Hye-Young (Department of Biological Science and Institute of Bioscience and Biotechnology, Myongji University)
Lee, Hong-Sub (Ildong Pharmaceutical Co., Ltd.)
Hong, Soon-Kwang (Department of Biological Science and Institute of Bioscience and Biotechnology, Myongji University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 497-502 More about this Journal
Abstract
The essential oil from the cones of Pinus koraiensis was prepared after removing the seeds, and its chemical composition analyzed using gas chromatography-mass spectrometry (GC-MS). Hydrodistillation of the P. koraiensis cones yielded 1.07% (v/w) of essential oil, which was almost three times the amount of essential oil extracted from the needles of the same plant. Moreover, the antimicrobial activities of the oil against the growth of Gram-positive bacteria, Gram-negative bacteria, and fungi were evaluated using the agar disc diffusion method and broth microdilution method. Eighty-seven components, comprising about 96.8% of the total oil, were identified. The most abundant oil components were limonene (27.90%), ${\alpha}$-pinene (23.89%), ${\beta}$-pinene (12.02%), 3-carene(4.95%), ${\beta}$-myrcene (4.53%), isolongifolene (3.35%), (-)-bornyl acetate (2.02%), caryophyllene (1.71%), and camphene (1.54%). The essential oil was confirmed to have significant antimicrobial activities, especially against pathogenic fungal strains such as Candida glabrata YFCC 062 and Cryptococcus neoformans B 42419. Therefore, the present results indicate that the essential oil from the cones of Pinus koraiensis can be used in various ways as a nontoxic and environmentally friendly disinfectant.
Keywords
Essential oil; antimicrobial activity; Pinus koraiensis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
1 Harkenthal, M., J. Reichling, H. K. Geiss, and R. Saller. 1999. Comparative study on the in vitro antibacterial activity of Australian tea tree oil, cajuput oil, niaouli oil, manuka oil, kanuka oil, and eucalyptus oil. Pharmazie 54: 460-463
2 Helander, I. M., H.-L. Alakomi, K. Latva-Kala, T. Mattila-Sandholm, I. Pol, E. J. Smid, L. G. M. Gorris, and A. Von Wright. 1998. Characterization of the action of selected essential oil components on Gram-negative bacteria. J. Agric. Food Chem. 46: 3590-3595   DOI   ScienceOn
3 Porter, N. G. and A. L. Wilkins. 1999. Chemical, physical and antimicrobial properties of essential oils of Leptospermum scoparium and Kunzea ericoides. Phytochem. Oxford 50: 407-415   DOI   ScienceOn
4 Zhang, C., H. Li, T. Yun, Y. Fu, C. Liu, B. Gong, and B. Neng. 2008. Chemical composition, antimicrobial and antioxidant activities of the essential oil of Tibetan herbal medicine Dracocephalum heterophyllum Benth. Nat. Prod. Res. 22: 1-11   DOI   ScienceOn
5 Deans, S. G. and G. Ritchie. 1987. Antibacterial properties of plant essential oils. Int. J. Food Microbiol. 5: 165-180   DOI   ScienceOn
6 Li, K., L. Qingwang, L. Jian, T. Zhang, Z. Han, D. Gao, and F. Zheng. 2007. Antitumor activity of the procyanidins from Pinus koraiensis bark on mice bearing U14 cervical cancer. Yakugaku Zasshi 127: 1145-1151   DOI   ScienceOn
7 Lee, S. O., I.-K. Park, G. J. Choi, H. K. Lim, K. S. Jang, K. Y. Cho, S.-C. Shin, and J.-C. Kim. 2007. Fumigant activity of essential oils and components of Illicium verum and Schizonepeta tenuifolia against Botrytis cinerea and Colletotrichum gloeosporioides. J. Microbiol. Biotechnol. 17: 1568-1572   과학기술학회마을
8 Cowan, M. M. 1999. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 12: 564-582
9 Gustafson, J. E., Y. C. Liew, S. Chew, J. L. Markham, H. C. Bell, S. G. Wyllie, and J. R. Warmington. 1998. Effects of tea tree oil on Escherichia coli. Lett. Appl. Microbiol. 26: 194-198   DOI   ScienceOn
10 Williams, L. R. and V. Home. 1995. A comparative study of some essential oils for potential use in topical applications for the treatment of the yeast Candida albicans. Aust. J. Med. Herbalism 7: 57-62
11 Cox, S. D., C. M. Mann, J. L. Markham, H. C. Bell, J. E. Gustafson, J. R. Warmington, and S. G. Wyllie. 2000. The mode of antimicrobial action of the essential oil of Melaleuca alternifolia (tea tree oil). J. Appl. Microbiol. 88: 170-175   DOI   ScienceOn
12 Bagchi, D., M. Bagchi, S. J. Stohs, D. K. Das, S. D. Ray, C. A. Kuszynski, S. S. Joshi, and H. G. Pruess. 2000. Free radicals and grape seed proanthocyanidin extract: Importance in human health and disease prevention. Toxicology 148: 187-197   DOI
13 Chung, K.-H., K.-S. Yang, J. Kim, J.-C. Kim, and K.-Y. Lee. 2007. Antibacterial activity of essential oils on the growth of Staphylococcus aureus and measurement of their binding interaction using optical biosensor. J. Microbiol. Biotechnol. 17: 1848-1855   과학기술학회마을
14 Cox, S. D., J. E. Gustafson, C. M. Mann, J. L. Markham, Y. C. Liew, R. P. Hartland, H. C. Bell, J. R. Warmington, and S. G. Wyllie. 1998. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett. Appl. Microbiol. 26: 355-358   DOI   ScienceOn
15 Cha, J.-D., E.-K. Jung, B.-S. Kil, and K.-Y. Lee. 2007. Chemical composition and antibacterial activity of essential oil from Artemisia feddei. J. Microbiol. Biotechnol. 17: 2061-2065   과학기술학회마을
16 Hong, E.-J., A.-J. Na, B.-G. Choi, C.-C. Choi, and E.-B. Jeung. 2004. Antibacterial and antifungal effects of essential oils from coniferous trees. Biol. Pharm. Bull. 27: 863-866   DOI   ScienceOn
17 Saller, R., T. Berger, J. Reichling, and M. Harkenthal. 1998. Pharmaceutical and medicinal aspects of Australian tea tree oil. Phytomedicine 5: 489-495   DOI   ScienceOn
18 Asset, G., B. Staels, R. L. Wolff, E. Bauge, Z. Madj, J. C. Fruchart, and J. Dallongeville. 1999. Effects of Pinus pinaster and Pinus koraiensis seed oil supplementation on lipoprotein metabolism in the rat. Lipids 34: 39-44   DOI   ScienceOn