Browse > Article

Functional Effects of Increased Copy Number of the Gene Encoding Proclavaminate Amidino Hydrolase on Clavulanic Acid Production in Streptomyces clavuligerus ATCC 27064  

Song, Ju-Yeon (School of Biological Sciences, Seoul National University)
Kim, Eun-Sook (School of Biological Sciences, Seoul National University)
Kim, Dae-Wi (School of Biological Sciences, Seoul National University)
Jesen, Susan E. (Department of Biological Sciences, University of Alberta)
Lee, Kye-Joon (School of Biological Sciences, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.3, 2008 , pp. 417-426 More about this Journal
Abstract
The effect of increasing levels of proclavaminate amidino hydrolase (Pah) on the rate of clavulanic acid production in Streptomyces clavuligerus ATCC 27064 was evaluated by increasing dosoge of a gene (pah2) encoding Pah. A strain (SMF5703) harboring a multicopy plasmid containing the pah2 gene showed significantly retarded cell growth and reduced clavulanic acid production, possibly attributable to the deleterious effects of the multicopy plasmid. In contrast, a strain (SMF5704) carrying a single additional copy of pah2 introduced into chromosome via an integrative plasmid showed enhanced production of clavulanic acid and increased levels of pah2 transcripts. Analysis of transcripts of other genes involved in the clavulanic acid biosynthetic pathway revealed a pattern similar to that seen in the parent. From these results, it appears that clavulanic acid production can be enhanced by duplication of pah2 through integration of a second copy of the gene into chromosome. However, increasing the copy number of only one gene, such as pah2, does not affect the expression of other pathway genes, and so only modest improvements in clavulanic acid production can be expected. Flux controlled by Pah did increase when the copy number of pah2 was doubled, suggesting that under these growth conditions, Pah levels may be a limiting factor regulating the rate of clavulanic acid biosynthesis in S. clavuligerus.
Keywords
Streptomyces clavuligerus ATCC 27064; proclavaminate amidino hydrolase; clavulanic acid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Foulstone, M. and C. Reading. 1982. Assay of amoxycillin and clavulanic acid, the components Augmentin, in biological fluids with high performance liquid chromatography. Antimicrob. Agents Chemother. 22: 753-762   DOI   ScienceOn
2 Jensen, S. E., A. Wong, A. Griffin, and B. Barton. 2004. Streptomyces clavuligerus has a second copy of the proclavaminate amidinohydrolase gene. Antimicrob. Agents Chemother. 48: 514-520   DOI   ScienceOn
3 Kieser, T., M. J. Bibb, M. J. Butter, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich
4 Nicholson, N. H., K. H. Baggaley, R. Cassels, M. Davison, S. W. Elson, M. Fulston, J. W. Tyler, and S. R. Woroniecki. 1994. Evidence that the immediate biosynthetic precursor of clavulanic acid is its N-aldehyde analog. J. Chem. Soc. Chem. Commun. 1994: 1281-1282
5 Ryu, Y. G., W. Jin, J. Y Kim, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
6 Saudagar, P. S. and R. S. Singhal. 2007. Optimization of nutritional requirements and feeding strategies for clavulanic acid production by Streptomyces clavuligerus. Bioresour. Technol. 98: 2010-2017   DOI   ScienceOn
7 Tahlan, K., C. Anders, and S. E. Jensen. 2004. The paralogous pairs of genes involved in clavulanic acid and clavam metabolite biosynthesis are differently regulated in Streptomyces clavuligerus. J. Bacteriol. 186: 6286-6297   DOI   ScienceOn
8 Vara, J., M. Lewandowska-Skarbek, Y. G. Wang, S. Donadio, and C. R. Hutchinson. 1989. Cloning of genes governing the deoxysugar portion of the erythromycin biosynthesis pathway in Saccharopolyspora erythraea (Streptomyces erythreus). J. Bacteriol. 171: 5872-5881   DOI
9 Wu, T. K., R. W. Busby, T. A. Houston, D. B. McIlwaine, L. A. Egan, and C. A. Townsend. 1995. Identification, cloning, sequencing, and overexpression of the gene encoding proclavaminate amidino hydrolase and characterization of protein function in clavulanic acid biosynthesis. J. Bacteriol. 177: 3714-3720   DOI
10 Bachmann, B. O., R. Li, and C. A Townsend. 1998. $\beta$-Lactam synthetase: A new biosynthetic enzyme. Proc. Natl. Acad. Sci. USA 95: 9082-9086
11 Hung, T. V., S. Malla, B. C. Park, K. Kiou, H. C. Lee, and J. K. Sohng. 2007. Enhancement of clavulanic acid by replicative and integrative expression of ccaR and cas2 in Streptomyces clavuligerus NRRL3585. J. Microbiol. Biotechnol. 17: 1538-1545   과학기술학회마을
12 Brown, A. G., D. Butterworth, M. Cole, G. Hanscombe, J. D. Hood, C. Reading, and G. N. Rolison. 1976. Naturally occurring $\beta$-lactamase inhibitors with antibacterial activity. J. Antibiot. 29: 668-669   DOI
13 Ishida, K., T. V. Hung, H. C. Lee, K. Liou, C. H. Shin, Y. J. Yoon, and J. K. Sohng. 2006. Degradation of clavulanic acid during the cultivation of Streptomyces clavuligerus; Instability of clavulanic acid by metabolites and proteins from the strain. J. Microbiol. Biotechnol. 16: 590-596   과학기술학회마을
14 Ouzounis, C. A. and N. C. Kyrpides. 1994. On the evolution of arginases and related enzymes. J. Mol. Evol. 39: 101-104
15 Sambrook, J., E. F. Fritsch, and T. Maniatis. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
16 Baldwin, J. E., R. M. Adlington, J. S. Bryans, A. O. Bringhen, J. B. Coates, N. P. Crouch, M. D. Lloyd, C. J. Schofield, S. W. Elson, K. H. Baggaley, R. Cassels, and N. H. Nicholson. 1991. Isolation of dihydroclavaminic acid, an intermediate in the biosynthesis of clavulanic acid. Tetrahedron 47: 4089-4100   DOI   ScienceOn
17 Gust, B., G. Chandra, D. Jakimowicz, T. Yuqing, C. J. Bruton, and K. F. Chater. 2004. Lambda red-mediated genetic manipulation of antibiotic producing Streptomyces. Adv. Appl. Microbiol. 54: 107-128   DOI
18 Salowe, S. P., W. J. Krol, D. Iwata-Reuyl, and C. A. Townsend. 1991. Elucidation of the order of oxidations and identification of an intermediate in the multistep clavaminate synthase reaction. Biochemistry 30: 2281-2292   DOI   ScienceOn
19 Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martin, and P. Liras. 1999. Deletion of the pyc gene blocks clavulanic acid biosynthesis except in glycerol-containing medium: Evidence for two different genes in formation of the C3 unit. J. Bacteriol. 181: 6922-6928
20 Quesenberry, M. S. and Y. C. Lee. 1996. A rapid formaldehyde assay using purpald reagent: Application under periodation conditions. Anal. Biochem. 234: 50-55   DOI   ScienceOn
21 Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martin, and P. Liras. 1998. The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211: 311-321   DOI   ScienceOn
22 Paradkar, A. S., K. A. Aidoo, and S. E. Jensen. 1998. A pathway-specific transcriptional activator regulates late steps of clavulanic acid biosynthesis in Streptomyces clavuligerus. Mol. Microbiol. 27: 831-843   DOI   ScienceOn
23 Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116: 43-49   DOI   ScienceOn
24 Elson, S. W., K. H. Baggaley, M. Davison, M. Fulston, N. H. Nicholson, G. D. Risbridger, and J. W. Tyler. 1993. The identification of three new biosynthetic intermediates and one further biosynthetic enzyme in the clavulanic acid pathway. J. Chem. Soc. Chem. Commun. 1993: 1212-1214
25 Mellado, E., L. M. Lorenzana, M. Rodriguez-Saiz, B. Diez, P. Liras, and J. L. Barredo. 2002. The clavulanic acid biosynthetic cluster of Streptomyces clavuligerus: Genetic organization of the region upstream of the car gene. Microbiology 148: 1427-1438   DOI
26 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmids. J. Mol. Biol. 166: 557-580   DOI
27 Romero, J., P. Liras, and J. F. Martin. 1984. Dissociation of cephamycin and clavulanic acid biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 20: 318-325   DOI
28 Pirt, S. J. 1975. Parameters of growth and analysis of growth data, pp. 4-14. In: Principles of Microbe and Cell Cultivation. Blackwell, Oxford, U.K.
29 Khaleeli, N., R. Li, and C. A. Townsend. 1999. Origin of the $\beta$-lactam carbons in clavulanic acid from an unusual thiamine pyrophosphate-mediated reaction. J. Am. Chem. Soc. 121: 9223-9224   DOI   ScienceOn
30 Perez-Llarena, F. J., P. Liras, A. Rodriguez-Garcia, and J. F. Martin. 1997. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: Amplification results in overproduction of both beta-lactam compounds. J. Bacteriol. 179: 2053-2059   DOI
31 Marsh, E. N., M. D. Chang, and C. A. Townsend. 1992. Two isozymes of clavaminate synthase central to clavulanic acid formation: Cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry 31: 12648-12657   DOI   ScienceOn
32 Ives, P. R. and M. E. Bushell. 1997. Manipulation of the physiology of clavulanic acid production in Streptomyces clavuligerus. Microbiology 143: 3573-3579   DOI   ScienceOn
33 Salowe, S. P., E. N. Marsh, and C. A. Townsend. 1990. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: An unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29: 6499-6508   DOI   ScienceOn
34 MacNeil, D. J., K. M. Gewain, C. L. Ruby, G. Dezeny, P. H. Gibbons, and T. MacNeil. 1992. Analysis of Streptomyces avermitilis genes required for avermectin biosynthesis utilizing a novel integration vector. Gene 111: 61-68   DOI   ScienceOn
35 Paradkar, A. S., R. H. Mosher, C. Anders, A. Griffin, J. Griffin, C. Hughes, P. Greaves, B. Barton, and S. E. Jensen. 2001. Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl. Environ. Microbiol. 67: 2292-2297   DOI   ScienceOn
36 Valentine, B. P., C. R. Bailey, A. Doherty, J. Morris, S. W. Elson, K. H. Baggaley, and N. H. Nicholson. 1993. Evidence that arginine is a later metabolic intermediate than ornithine in the biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Chem. Soc. Chem. Commun. 1993: 1210-1211
37 Datsenko, K. A. and B. L. Wanner. 2000. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97: 6640-6645