Browse > Article

Selection and Target-Site Mapping of Peptides Inhibiting HCV NS5B Polymerase Using Phage Display  

Kim, Min-Soo (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
Park, Chan-Hee (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
Lee, Jong-Ho (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
Myung, Hee-Joon (Department of Bioscience and Biotechnology, Hankuk University of Foreign Studies)
Publication Information
Journal of Microbiology and Biotechnology / v.18, no.2, 2008 , pp. 328-333 More about this Journal
Abstract
A series of pep tides binding to the HCV NS5B polymerase was selected from phage display peptide libraries. A conserved motif of Ser-Arg-X-Arg/Leu was identified among the selected peptides, and Pep2 (Trp-Ser-Arg-Pro-Arg-Ser-Leu) was chosen for further characterization. The binding of Pep2 to HCV NS5B in vivo was shown by a yeast two-hybrid assay and by subcellular colocalization analysis using immunofluorescence confocal microscopy. The in vitro interaction was also confirmed by GST pulldown assay. The replication of the HCV 1b subgenomic replicon was efficiently inhibited by the presence of the peptide. By using a subtractive biopanning against Pep2, the binding site of the peptide was mapped at the pocket of Pro388 to Pro391 in the thumb subdomain of the polymerase. A yeast two-hybrid analysis using Pro388Ala and Pro391Ala mutants of NS5B confirmed the binding.
Keywords
Hepatitis C virus; NS5B polymerase; phage display; peptide inhibitor; binding pocket;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Chan, L., O. Pereira, T. J. Reddy, S. K. Das, C. Poisson, M. Courchesne, M. Proulx, A. Siddiqui, C. G. Yannopoulos, et al. 2004. Discovery of thiophene-2-carboxylic acids as potent inhibitors of HCV NS5B polymerase and HCV subgenomic RNA replication. Part 2: Tertiary amides. Bioorg. Med. Chem. Lett. 14: 797-800   DOI   ScienceOn
2 De Francesco, R. and G. Migliaccio. 2005. Challenges and successes in developing new therapies for hepatitis C. Nature 436: 953-960   DOI   ScienceOn
3 Gowans, E. J., K. L. Jones, M. Bharadwaj, and C. C. Jackson. 2004. Prospects for dendritic cell vaccination in persistent infection with hepatitis C virus. J. Clin. Virol. 30: 283-290   DOI   ScienceOn
4 Hantusch, B., S. Krieger, E. Untersmayr, I. Scho, R. Knittelfelder, S. Flicker, S. Spitzauer, R. Valenta, G. Boltz-Nitulescu, et al. 2004. Mapping of conformational IgE epitopes on Phl p 5a by using mimotopes from a phage display library. J. Allergy Clin. Immunol. 114: 1294-1300   DOI   ScienceOn
5 Lee, J.-H., I. Y. Nam, and H. Myung. 2006. Nonstructural protein 5B of hepatitis C virus. Mol. Cells 21: 330-336
6 McHutchison, J. G. and T. Poynard. 1999. Combination therapy with interferon plus ribavirin for the initial treatment of chronic hepatitis C. Semin. Liver Dis. 19: 57-65
7 Moradpour, D. and H. E. Blum. 2004. A primer on the molecular virology of hepatitis C. Liver Int. 24: 519-525   DOI
8 Purcell, R. 1994. Hepatitis viruses: Changing patterns of human disease. Proc. Natl. Acad. Sci. USA 91: 2401-2406
9 Seo, M., J. Lee, M. Kim, H. Chae, and H. Myung. 2006. Selection and characterization of peptides specifically binding to $$TiO_{2}$$ nanoparticles. J. Microbiol. Biotechnol. 16: 303-307   과학기술학회마을
10 Shin, K., J. Lim, J. Kim, H. Myung, and S.-W. Lee. 2006. Inhibition of replication of hepatitis C virus replicon with nuclease-resistant RNA aptamers. J. Microbiol. Biotechnol. 16: 1634-1639   과학기술학회마을
11 Tomei, L., S. Altamura, L. Bartholomew, M. Bisbocci, C. Bailey, M. Bosserman, A. Cellucci, E. Forte, I. Incitti, et al. 2004. Characterization of the inhibition of hepatitis C virus RNA replication by nonnucleosides. J. Virol. 78: 938-946   DOI   ScienceOn
12 Wasley, A. and M. J. Alter. 2000. Epidemiology of hepatitis C: Geographic differences and temporal trends. Semin. Liver Dis. 20: 1-16   DOI   ScienceOn
13 Bressanelli, S., L. Tomei, A. Roussel, I. Incitti, R. L. Vitale, M. Mathieu, R. De Francesco, and F. A. Rey. 1999. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl. Acad. Sci. USA 96: 13034-13039
14 Rowley, M. J., M. Scealy, J. C. Whisstock, J. A. Jois, L. C. Wijeyewickrema, and I. R. Mackay. 2000. Prediction of the immunodominant epitope of the pyruvate dehydrogenase complex E2 in primary biliary cirrhosis using phage display. J. Immunol. 164: 3413-3419   DOI
15 Leveque, V. J.-P. and Q. M. Wang. 2002. RNA-dependent RNA polymerase encoded by hepatitis C virus: Biomedical applications. Cell. Mol. Life Sci. 59: 909-919   DOI   ScienceOn
16 Nguyen, T. T., A. T. Gates, L. L. Gutshall, V. K. Johnston, B. Gu, K. J. Duffy, and R. T. Sarisky. 2003. Resistance profile of a hepatitis C virus RNA-dependent RNA polymerase benzothiadiazine inhibitor. Antimicrob. Agents Chemother. 47: 3525-3530   DOI   ScienceOn
17 Adachi, T., H. Ago, N. Habuka, K. Okuda, M. Komatsu, S. Ikeda, and K. Yatsunami. 2002. The essential role of C-terminal residues in regulating the activity of hepatitis C virus RNAdependent RNA polymerase. Biochim. Biophys. Acta 1601: 38-48   DOI   ScienceOn
18 Smith, G. P. 1985. Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228: 1315-1317   DOI
19 Wang, C., P. Sarnow, and A. Siddiqui. 1993. Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J. Virol. 67: 3338-3344
20 Wang, M., K. K. Ng, M. M. Cherney, L. Chan, C. G. Yannopoulos, J. Bedard, N. Morin, N. Nguyen-Ba, M. H. Alaoui-ismaili, et al. 2003. Non-nucleoside analogue inhibitors bind to an allosteric site on HCV NS5B polymerase. Crystal structures and mechanism of inhibition. J. Biol. Chem. 278: 9489-9495   DOI   ScienceOn
21 Pogam, S. L., H. Kang, S. F. Harris, V. Leveque, A. M. Giannetti, S. Ali, W.-R. Jiang, S. Rajyaguru, G. Tavares, et al. 2006. Selection and characterization of replicon variants dually resistant to thumb- and palm-binding nonnucleoside polymerase inhibitors of the hepatitis C virus. J. Virol. 80: 6146-6154   DOI   ScienceOn
22 Sidhu, S., W. Fairbrother, and K. Deshayes. 2003. Exploring protein-protein interactions with phage display. ChemBioChem 4: 14-25   DOI   ScienceOn
23 Tomei, L., S. Altamura, L. Bartholomew, A. Biroccio, A. Ceccacci, L. Pacini, F. Narjes, N. Gennari, M. Bisbocci, et al. 2003. Mechanism of action and antiviral activity of benzimidazolebased allosteric inhibitors of the hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 77: 13225-13231   DOI   ScienceOn
24 Cohen, J. 1999. The scientific challenge of hepatitis C. Science 258: 26-30
25 Kim, J., H. Park, K. Choi, J. Lee, J. Park, and M. Yoon. 2006. Screening of peptides bound to anthrax protective antigen by phage display. J. Microbiol. Biotechnol. 16: 1784-1790   과학기술학회마을
26 Adda, C. G., R. F. Anders, L. Tilley, and M. Foley. 2002. Random sequence libraries displayed on phage: Identification of biologically important molecules. Comb. Chem. High Throughput Screen. 5: 1-14   DOI   ScienceOn
27 Rasmusen, U. B., V. Schreiber, H. Schultz, F. Mischler, and K. Schughart. 2002. Tumor cell-targeting by phage-displayed peptides. Cancer Gene Ther. 9: 606-612   DOI   ScienceOn
28 Yang, Z., W. Shm, M. Kim, K. Lee, K. Kim, K. Kim, C. Kim, S. Ha, and D. Chung. 2007. Production and characterization of monoclonal and recombinant antibodies against antimicrobial sulfamethazine. J. Microbiol. Biotechnol. 17: 571-578   과학기술학회마을
29 Suzuki, R., T. Suzuki, K. Ishii, Y. Matsuura, and T. Miyamura. 1999. Processing and functions of hepatitis C virus proteins. Intervirology 42: 145-152   DOI   ScienceOn
30 Hwang, B. and S.-W. Lee. 2005. Analysis of in vivo interaction of HCV NS3 protein and specific RNA aptamer with yeast three-hybrid system. J. Microbiol. Biotechnol. 15: 660-664   과학기술학회마을
31 Lecut, C., V. Arocas, H. Ulrichts, A. Elbaz, J. Villeval, J. Lacapere, H. Deckmyn, and M. Jandrot-Perrus. 2004. Identification of residues within human glycoprotein VI involved in the binding to collagen. J. Biol. Chem. 279: 52293-52299   DOI   ScienceOn
32 Ichii, K., Y. Tanaka, C.-C. Yap, H. Aizaki, Y. Matsumura, and T. Miyamura. 1999. Expression of hepatitis C virus NS5B protein: Characterization of its RNA polymerase activity and RNA binding. Hepatology 29: 1227-1235   DOI   ScienceOn
33 Beaulieu, P. L. and Y. S. Tsantrizos. 2004. Inhibitors of the HCV NS5B polymerase: New hope for the treatment of hepatitis C infections. Curr. Opin. Investig. Drugs 5: 838-850
34 Krieger, N., V. Lohmann, and R. Bartenschlager. 2001. Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J. Virol. 75: 4614-4624   DOI   ScienceOn
35 Kofler, M., K. Motzny, M. Beyermann, and C. Freund. 2005. Novel interaction partners of the CD2BP2-GYF domain. J. Biol. Chem. 280: 33397-33402   DOI   ScienceOn
36 Bressanelli, S., L. Tomei, F. A. Rey, and R. De Francesco. 2002. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol. 76: 3482-3492   DOI   ScienceOn
37 Lohmann, V., A. Roos, F. Korner, J.-O. Koch, and R. Bartenschlager. 2000. Biochemical and structural analysis of the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. J. Viral Hepat. 7: 167-174   DOI   ScienceOn
38 Amin, A., J. Zaccardi, S. Mullen, S. Olland, M. Orlowski, B. Feld, P. Labonte, and P. Mak. 2003. Identification of constrained peptides that bind to and preferentially inhibit the activity of the hepatitis C viral RNA-dependent RNA polymerase. Virology 15: 158-169