Browse > Article

Enhancement of Clavulanic Acid by Replicative and Integrative Expression of ccaR and cas2 in Streptomyces clavuligerus NRRL3585  

Hung, Trinh Viet (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction (IBR), Sun Moon University)
Malla, Sailesh (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction (IBR), Sun Moon University)
Park, Byoung-Chul (Korea Research Institute of Bioscience and Biotechnology)
Liou, Kwang-Kyoung (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction (IBR), Sun Moon University)
Lee, Hei-Chan (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction (IBR), Sun Moon University)
Sohng, Jae-Kyung (Department of Pharmaceutical Engineering, Institute of Biomolecule Reconstruction (IBR), Sun Moon University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.9, 2007 , pp. 1538-1545 More about this Journal
Abstract
Clavulanic acid (CA) is an inhibitor of ${\beta}$-lactamase that is produced from Streptomyces clavuligerus NRRL3585 and is used in combination with other antibiotics in clinical treatments. In order to increase the production of CA, the replicative and integrative expressions of ccaR (encoding for a specific regulator of the CA biosynthetic operon) and cas2 (encoding for the rate-limiting enzyme in the CA biosynthetic pathway) were applied. Six recombinant plasmids were designed for this study. The pIBRHL1, pIBRHL3, and pIBRHL13 were constructed for overexpression, whereas pNQ3, pNQ2, and pNQ1 were constructed for chromosomal integration with ccaR, cas2, and ccaR-cas2, respectively. All of these plasmids were transformed into S. clavuligerus NRRL3585. CA production in transformants resulted in a significantly enhanced amount greater than that of the wild type, a 2.25-fold increase with pIBRHLl, a 9.28-fold increase with pNQ3, a 5.06-fold increase with pIBRHL3, a 2.93-fold increase with pNQ2 integration, a 5.79-fold increase with pIBRHLl3, and a 23.8-fold increase with pNQ1. The integrative pNQl strain has been successfully applied to enhance production.
Keywords
Streptomyces clavuligerus NRRL 3585; clavulanic acid; overproduction; ccaR; cas2;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
1 Baggaley, K. H., A. G. Brown, and C. J. Schofield. 1997. Chemistry and biosynthesis of clavulanic acid and other clavams. Nat. Prod. Rep. 14: 309-333   DOI   ScienceOn
2 Kang, S. G., D. H. Lee, A. C. Ward, and K. J. Lee. 1998. Rapid and quantitative analysis of clavulanic acid production by the combination of pyrolysis mass spectrometry and artificial neural network. J. Microbiol. Biotechnol. 8: 523-530
3 Mosher, R. H., A. S. Paradkar, C. Anders, B. Barton, and S. E. Jensen. 1999. Genes specific for the biosynthesis of clavam metabolites antipodal to clavulanic acid are clustered with the gene for clavaminate synthase 1 in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 43: 1215-1224
4 Parajuli, N., T. V. Hung, I. Kenji, T. T. Hang, H. C. Lee, K. K. Liou, and J. K. Sohng. 2005. Identification and characterization of the afsR homologue regulatory gene from Streptomyces peucetius ATCC 27952. Res. Microbiol. 156: 707-712   DOI   ScienceOn
5 Perez-Liarena, F. J., P. Liras, A. Rodríguez-García, and J. F. Martín. 1997. A regulatory gene (ccaR) required for cephamycin and clavulanic acid production in Streptomyces clavuligerus: Amplification results in overproduction of both $\beta$-lactam compounds. J. Bacteriol. 179: 2053-2059   DOI
6 Reading, E. and M. Cole. 1977. Clavulanic acid: A beta lactamase-inhibiting $\beta$-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11: 852-857   DOI   ScienceOn
7 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
8 Stutzman-Engwall, K. J., S. L. Otten, and C. R. Hutchinson. 1992. Regulation of secondary metabolism in Streptomyces spp. and overproduction of daunorubicin in Streptomyces peucetius. J. Bacteriol. 174: 144-154   DOI
9 Zhao, X. Q., K. R. Kim, L. W. Sang, S. H. Kang, Y. Y. Yang, and J. W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353   과학기술학회마을
10 Buckland, B. C., D. R. Omstead, and V. Santamaria. 1977. Novel $\beta$-lactam antibiotics. Comprehensive Biotechnol. 3: 49-67
11 Hung, T. V. 2005. Application of genetic engineering to enhance clavulanic acid production from Streptomyces clavuligerus NRRL3585. MSc Thesis, Sun Moon University, Asan, Korea
12 Gouveia, E. R., A. Baptista-Neto, A. G. Azevedo, A. C. Badino Jr., and C. O. Hokka. 1999. Improvement of clavulanic acid production by Streptomyces clavuligerus in medium containing soybean derivatives. World J. Microbiol. Biotechnol. 15: 623-627   DOI
13 Jensen, S. E., A. S. Paradkar, R. H. Mosher, C. Anders, P. H. Beatty, M. J. Brumlik, A. Griffin, and B. Barton. 2004. Five additional genes are involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. Antimicrob. Agents Chemother. 48: 192-202   DOI   ScienceOn
14 Higgens, C. E. and R. E. Kastner. 1971. Streptomyces clavuligerus sp. nov., a $\beta$-lactam antibiotic producer. Int. J. Syst. Bacteriol. 21: 326-331   DOI
15 Paradkar, A. S., R. H. Mosher, C. Anders, A. Griffin, J. Griffin, C. Hughes, P. Greaves, B. Barton, and S. E. Jensen. 2001. Applications of gene replacement technology to Streptomyces clavuligerus strain development for clavulanic acid production. Appl. Environ. Microbiol. 67: 2292-2297   DOI   ScienceOn
16 Ryu, Y. G., W. Jin, J. Y. Kim, S. H. Lee, and K. J. Lee. 2004. Stringent factor regulates antibiotics production and morphological differentiation of Streptomyces clavuligerus. J. Microbiol. Biotechnol. 14: 1170-1175
17 Sthapit, B., T. J. Oh, R. Lamichhane, K. Liou, H. C. Lee, C. G. Kim, and J. K. Sohng. 2004. Neocarzinostatin naphthoate synthase: An unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Lett. 566: 201-206   DOI   ScienceOn
18 Townsend, C. A. and M. F. Ho. 1985. Biosynthesis of clavulanic acid: Origin of the C3 unit. J. Am. Chem. Soc. 107: 1066-1068   DOI
19 Mayer, A. F. and W. D. Deckwer. 1996. Simultaneous production and decomposition of clavulanic acid during Streptomyces clavuligerus cultivations. Appl. Microbiol. Biotechnol. 45: 41-46   DOI   ScienceOn
20 Perez-Redondo, R., A. Rodriguez-Garcia, J. F. Martín, and P. Liras. 1998. The claR gene of Streptomyces clavuligerus, encoding a LysR-type regulatory protein controlling clavulanic acid biosynthesis, is linked to the clavulanate-9-aldehyde reductase (car) gene. Gene 211: 311-321   DOI   ScienceOn
21 Townsend, C. A. 2002. New reactions in clavulanic acid biosynthesis. Curr. Opin. Chem. Biol. 6: 583-589   DOI   ScienceOn
22 Garcia-Dominguez, M., J. F. Martin, B. Mahro, A. L. Demain, and P. Liras. 1987. Efficient plasmid transformation of the $\beta$-lactam producer Streptomyces clavuligerus. Appl. Environ. Microbiol. 53: 1376-1381
23 Brown, A. G., D. Butterworth, M. Cole, G. Hanscombe, J. D. Hood, C. Reading, and G. N. Robinson. 1976. Naturally occurring beta-lactamase inhibitors with antibacterial activity. J. Antibiot. 29: 668-669   DOI
24 Marsh, E. N., M. D. T. Chang, and C. A. Townsend. 1992. Two isozymes of clavaminate synthase central to clavulanic acid formation: Cloning and sequencing of both genes from Streptomyces clavuligerus. Biochemistry 31: 12648-12657   DOI   ScienceOn
25 Chater, K. F. 1993. Genetics of differentiation in Streptomyces. Annu. Rev. Microbiol. 47: 685-713   DOI   ScienceOn
26 Ishida, K., T. V. Hung, H. C. Lee, K. Liou, C. H. Shin, Y. J. Yoon, and J. K. Sohng. 2006. Degradation of clavulanic acid during the cultivation of Streptomyces clavuligerus; Instability of clavulanic acid by metabolites and proteins from the strain. J. Microbiol. Biotechnol. 16: 590-596   과학기술학회마을
27 Park, N. S., J. S. Myeong, H. J. Park, K. Han, S. N. Kim, and E. S. Kim. 2005. Characterization and culture optimization of regiospecific cyclosporine hydroxylation in rare actinomycetes species. J. Microbiol. Biotechnol. 15: 188-191   과학기술학회마을
28 Madduri, K. and C. R. Hutchinson. 1995. Functional characterization and transcriptional analysis of the dnrR1 locus, which controls daunorubicin biosynthesis in Streptomyces peucetius. J. Bacteriol. 177: 1208-1215   DOI
29 Jensen, S. E. and A. S. Paradkar. 1999. Biosynthesis and molecular genetics of clavulanic acid. Antonie Van Leeuwenhoek 75: 125-133   DOI   ScienceOn
30 Park, H. S., S. H. Kang, H. J. Park, and E. S. Kim. 2005. Doxorubicin productivity improvement by the recombinant Streptomyces peucetius with high-copy regulatory genes cultured in the optimized media composition. J. Microbiol. Biotechnol. 15: 66-71   과학기술학회마을
31 Li, R., N. Khaleeli, and C. A. Townsend. 2002. Expansion of the clavulanic acid gene cluster: Identification and in vivo functional analysis of three new genes required for biosynthesis of clavulanic acid by Streptomyces clavuligerus. J. Bacteriol. 182: 4087-4095   DOI   ScienceOn
32 Paradkar, A. S. and S. E. Jensen. 1995. Functional analysis of the gene encoding the clavaminate synthase 2 isoenzyme involved in clavulanic acid biosynthesis in Streptomyces clavuligerus. J. Bacteriol. 177: 1307-1314   DOI
33 Alexander, D. C. and S. E. Jensen. 1998. Investigation of the Streptomyces clavuligerus cephamycin C gene cluster and its regulation by the CcaR protein. J. Bacteriol. 180: 4068-4079
34 Foulstone, M. and C. Reading. 1982. Assay of amoxicillin and clavulanic acid, the components of augmentin, in biological fluids with high-performance liquid chromatography. Antimicrob. Agents Chemother. 22: 753-762   DOI   ScienceOn
35 Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. In: Practical Streptomyces Genetics, pp. 230-249. John Innes Foundation, Norwich, United Kingdom
36 Paget, M. S., L. Chamberlin, A. Atrih, S. J. Foster, and M. J. Buttner. 1999. Evidence that the extracytoplasmic function sigma factor E is required for normal cell wall structure in Streptomyces coelicolor A3(2). J. Bacteriol. 181: 204-211
37 Zhang, A. Z., J. S. Renb, K. Harlosb, C. H. McKinnona, I. J. Cliftona, and C. J. Schofielda. 2002. Crystal structure of a clavaminate synthase-Fe (II)-2-oxoglutarate-substrate-NO complex: Evidence for metal centered rearrangements. FEBS Lett. 517: 7-12   DOI
38 Howarth, T. T. and A. Brown. 1976. Clavulanic acid, a novel $\beta$-lactam isolated from Streptomyces clavuligerus; X-ray crystal structure analysis. J. Chem. Soc. Commun. 266-267
39 Santamarta, I., A. Rodríguez-García, R. Perez-Redondo, J. F. Martín, and P. Liras. 2002. CcaR is an autoregulatory protein that binds to the ccaR and cefD-cmcI promoters of the cephamycin C-clavulanic acid cluster in Streptomyces clavuligerus. J. Bacteriol. 184: 3106-3113   DOI   ScienceOn
40 Arias, P., M. A. Fernández-Moreno, and F. Malpartida. 1999. Characterization of the pathway-specific positive transcriptional regulator for actinorhodin biosynthesis in Streptomyces coelicolor A3(2) as a DNA-binding protein. J. Bacteriol. 181: 6958-6968
41 Salowe, S. P., E. N. Marsh, and C. A. Townsend. 1990. Purification and characterization of clavaminate synthase from Streptomyces clavuligerus: An unusual oxidative enzyme in natural product biosynthesis. Biochemistry 29: 6499-6508   DOI   ScienceOn