Browse > Article

Expression Analysis of the csp-like Genes from Corynebacterium glutamicum Encoding Homologs of the Escherichia coli Major Cold-Shock Protein CspA  

Kim, Wan-Soo (Department of Biotechnology and Bioinformatics, Korea University)
Park, Soo-Dong (Department of Biotechnology and Bioinformatics, Korea University)
Lee, Seok-Myung (Department of Biotechnology and Bioinformatics, Korea University)
Kim, Youn-Hee (Department of Oriental Medicine, Semyung University)
Kim, Pil (Division of Biotechnology, The Catholic University of Korea)
Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.8, 2007 , pp. 1353-1360 More about this Journal
Abstract
Three csp-like genes were identified in the Corynebacterium glutamicum genome and designated cspA, cspB, and cspA2. The genes cspA and cspA2 encode proteins, comprising of 67 amino acid residues, respectively. They share 83% identity with each other. Identity of those proteins with Escherichia coli Csp proteins was near 50%. The cspB gene encodes a protein composed of 127 amino acids, which has 40% and 35% sequence identity with CspA and CspA2, respectively, especially at its N-terminal region. Analysis of the gene expression profiles was done using transcriptional cat fusion, which identified not only active expression of the three genes at the physiological growth temperature of $30^{\circ}C$ but also growth phase-dependent expression with the highest activity at late log phase. The promoters of cspA and cspA2 were more active than that of cspB. The expression of the two genes increased by 30% after a temperature downshift to $15^{\circ}C$, and such stimulation was more evident in the late growth phase. In addition, the cspA gene appeared to show DNA-binding activity in vivo, and the activity increased at lower temperatures. Interestingly, the presence of cspA in multicopy hindered the growth of the host C. glutamicum cells at $20^{\circ}C$, but not at $30^{\circ}C$. Altogether, these data suggest that cspA, cspB, and cspA2 perform functions related to cold shock as well as normal cellular physiology. Moreover, CspA and its ortholog CspA2 may perform additional functions as a transcriptional regulator.
Keywords
Corynebacterium glutamicum; csp; cold shock;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Derzelle, S., B. Hallet, K. P. Francis, T. Ferain, J. Delcour, and P. Hols. 2000. Changes in cspL, cspP, and cspC mRNA abundance as a function of cold shock and growth phase in Lactobacillus plantarum. J. Bacteriol. 182: 5105-5113   DOI   ScienceOn
2 Hermann, T. 2003. Industrial production of amino acids by coryneform bacteria. J. Biotechnol. 104: 155-172   DOI   ScienceOn
3 Jiang, W., Y. Hou, and M. Inouye. 1997. CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone. J. Biol. Chem. 272: 196-202   DOI   ScienceOn
4 Kim, T.-H., H.-J. Kim, J.-S. Park, Y. Kim, P. Kim, and H.-S. Lee. 2005. Functional analysis of sigH expression in Corynebacterium glutamicum. Biochem. Biophys. Res. Commun. 331: 1542-1547   DOI   ScienceOn
5 Park, S.-D., S.-N. Lee, I.-H. Park, J.-S. Choi, W.-K. Jeong, Y. Kim, and H.-S. Lee. 2004. Isolation and characterization of transcriptional elements from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 14: 789-795
6 Phadtare, S. and M. Inouye. 2001. Role of CspC and CspE in regulation of RpoS and UspA, the stress response proteins in Escherichia coli. J. Bacteriol. 183: 1205-1214   DOI   ScienceOn
7 Yamanaka, K., L. Fang, and M. Inouye. 1998. The CspA family in Escherichia coli: Multiple gene duplication for stress adaptation. Mol. Microbiol. 27: 247-255   DOI   ScienceOn
8 Ikeda, M. 2006. Towards bacterial strains overproducing Ltryptophan and other aromatics by metabolic engineering. Appl. Microbiol. Biotechnol. 69: 615-626   DOI   ScienceOn
9 Willimsky, G., H. Bang, G. Fischer, and M. A. Marahiel. 1992. Characterization of cspB, a Bacillus subtilis inducible cold shock gene affecting cell viability at low temperatures. J. Bacteriol. 174: 6326-6335   DOI
10 Francis, K. P., C. E. D. Rees, and G. S. A. B. Stewart. 1995. EMBL/GenBank Accession Number X91789
11 Vertès, A. A., M. Inui, and H. Yukawa. 2005. Manipulating corynebacteria, from individual genes to chromosomes. Appl. Environ. Microbiol. 71: 7633-7642   DOI   ScienceOn
12 Weber, M. H., C. L. Beckering, and M. A. Marahiel. 2001. Complementation of cold shock proteins by translation initiation factor IF1 in vivo. J. Bacteriol. 183: 7381-7386   DOI   ScienceOn
13 Yamanaka, K. and M. Inouye. 1997. Growth-phase-dependent expression of cspD, encoding a member of the CspA family in Escherichia coli. J. Bacteriol. 179: 5126-5130   DOI
14 Graumann, P. L. and M. A. Marahiel. 1999. Cold shock proteins CspB and CspC are major stationary-phase induced proteins in Bacillus subtilis. Arch. Microbiol. 171: 135-138   DOI   ScienceOn
15 Kim, H. M., E. Heinzle, and C. Wittmann. 2006. Deregulation of aspartokinase by single nucleotide exchange leads to global flux rearrangement in the central metabolism of Corynebacterium glutamicum. J. Microbiol. Biotechnol. 16: 1174-1179   과학기술학회마을
16 Kim, J. H., J.-Y. Park, S.-J. Jeong, J. Chun, and J. H. Kim. 2005. Cold shock response of Leuconostoc mesenteroides SY1 isolated from kimchi. J. Microbiol. Biotechnol. 15: 831-837   과학기술학회마을
17 Lopez, M. M., K. Yutani, and G. I. Makhatadze. 1999. Interaction of the major cold shock protein of Bacillus subtilis CspB with single-strand DNA templates of different base composition. J. Biol. Chem. 274: 33601-33608   DOI   ScienceOn
18 Michel, V., J. Lehoux, P. Anglade, G. Depret, and M. Hebraud. GenBank/EMBL Accession Numbers U62985 and U62988
19 Miller, J. H. 1972. Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
20 Phadtare, S., M. Inouye, and K. Severinov. 2002. The nucleic acid melting activity of Escherichia coli CspE is critical for transcription antitermination and cold acclimation of cells. J. Biol. Chem. 277: 7239-7245   DOI   ScienceOn
21 von der Osten, C. H., C. K. Gionnetti, and A. J. Sinskey. 1989. Design of defined medium for growth of Corynebacterium glutamicum in which citrate facilitates iron uptake. Biotechnol. Lett. 11: 11-16   DOI
22 Yamanaka, K. 1999. Cold shock response in Escherichia coli. J. Mol. Microbiol. Biotechnol. 1: 193-202
23 La Teana, A., A. Brandi, M. Falconi, R. Spurio, C. L. Pon. and C. O. Gualerzi. 1991. Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. Proc. Natl Acad. Sci. USA 88: 10907-10911
24 Lee, Y., E. Ahn, S. Park, E. L. Madsen, C. O. Jeon, and W. Park. 2006. Construction of a reporter strain Pseudomonas putida for the detection of oxidative stress caused by environmental pollutants. J. Microbiol. Biotechnol. 16: 386-390   과학기술학회마을
25 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
26 Wang, N., K. Yamanaka, and M. Inouye. 1999. CspI, the ninth member of the CspA family of Escherichia coli, is induced upon cold shock. J. Bacteriol. 181: 1603-1609
27 Kim, H.-J., J.-S. Park, Y. Kim, and H.-S. Lee. 2002. Utilization of lacZ to isolate regulatory genes from Corynebacterium glutamicum. J. Microbiol. Biotechnol. 12: 336-339
28 de Graaf, A. A., L. Eggeling, and H. Sahm. 2001. Metabolic engineering for L-lysine production by Corynebacterium glutamicum. Adv. Biochem. Eng. Biotechnol. 73: 9-29
29 Follettie, M. T., O. Peoples, C. Agoropoulou, and A. J. Sinskey. 1993. Gene structure and expression of the Corynebacterium flavum N13 ask-asd operon. J. Bacteriol. 175: 4096-4103   DOI
30 Phadtare, S. and M. Inouye. 1999. Sequence-selective interactions with RNA by CspB, CspC, CspE, members of the CspA family of Escherichia coli. Mol. Microbiol. 33: 1004-1014   DOI   ScienceOn
31 Xia, B., H. Ke, and M. Inouye. 2001. Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol. Microbiol. 40: 179-188   DOI   ScienceOn
32 Yoshihama, M., K. Higashiro, E. A. Rao, M. Akedo, W. G. Shanabruch, M. T. Follettie, G. C. Walker, and A. J. Sinskey. 1995. Cloning vector system for Corynebacterium glutamicum. J. Bacteriol. 162: 591-597
33 Brandi, A., C. L. Pond, and C. O. Gualerzi. 1994. Interaction of the main cold shock protein CS7.4 of Escherichia coli with the promoter region of hns. Biochimie 76: 1090-1098   DOI   ScienceOn
34 Kim, H. J., T.-H. Kim, Y. Kim, and H.-S. Lee. 2004. Identification and characterization of glxR, a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J. Bacteriol. 186: 3453-3460   DOI   ScienceOn
35 Koffas, M. and G. Stephanopoulos. 2005. Strain improvement by metabolic engineering: Lysine production as a case study for systems biology. Curr. Opin. Biotechnol. 16: 361-366   DOI   ScienceOn
36 Phadtare, S. 2004. Recent developments in bacterial coldshock response. Curr. Issues Mol. Biol. 6: 125-136
37 Tomioka, N., K. Shinozaki, and M. Sugiura. 1981. Molecular cloning and characterization of ribosomal RNA genes from a blue-green alga, Anacystis nidulans. Mol. Gen. Genet. 184: 359-363   DOI
38 Sahm, H., L. Eggeling, and A. A. de Graaf. 2000. Pathway analysis and metabolic engineering in Corynebacterium glutamicum. J. Biol. Chem. 381: 899-910   DOI   ScienceOn
39 Av-Gay, Y., Y. Aharonowitz, and G. Cohen. 1992. Streptomyces contain a 7.0 kDa cold shock like protein. Nucleic Acids Res. 20: 5478
40 Gualerzi, C. O., A. M. Giuliodori, and C. L. Pon. 2003. Transcriptional and post-transcriptional contol of cold-shock genes. J. Mol. Biol. 331: 527-539   DOI   ScienceOn
41 Wolffe, A. P., S. Tafari, M. Ranjan, and M. Familari. 1992. The Y-box factors: A family of nucleic acid binding proteins conserved from Escherichia coli to man. New Biol. 4: 290-298
42 Jones, P. G., R. Krah, S. R. Tafaci, and A. P. Wolffe. 1992. DNA gyrase, CS7.4, and the cold shock response in Escherichia coli. J. Bacteriol. 174: 5798-5802   DOI
43 Shaw, W. V. 1975. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol. 43: 737-755   DOI
44 Kim, T.-H., J.-S. Park, H.-J. Kim, Y. Kim, P. Kim, and H.-S. Lee. 2005. The whcE gene of Corynebacterium glutamicum is important for survival following heat and oxidative stress. Biochem. Biophys. Res. Commun. 337: 757-764   DOI   ScienceOn
45 Chapot-Chartier, M.-P., C. Schouler, A.-S. Lepeuple, J.-C. Gripon, and M.-C. Chopin. 1997. Characterization of cspB, a cold-shock-inducible gene from Lactococcus lactis, and evidence for a family of genes homologous to the Escherichia coli cspA major cold shock gene. J. Bacteriol. 179: 5589-5593   DOI
46 Wendisch, V. F. 2006. Genetic regulation of Corynebacterium glutamicum metabolism. J. Microbiol. Biotechnol. 16: 999-1009   과학기술학회마을
47 Graumann, P., T. M. Wendrich, M. H. Weber, K. Schroder, and M. A. Marahiel. 1997. A family of cold shock proteins in Bacillus subtilis is essential for cellular growth and for efficient protein synthesis at optimal and low temperatures. Mol. Microbiol. 25: 741-756   DOI   ScienceOn