Browse > Article

Identification of Two Entomopathogenic Bacteria from a Nematode Pathogenic to the Oriental Beetle, Blitopertha orientalis  

Yi, Young-Keun (Department of Bioresources Sciences, College of Natural Sciences, Andong National University)
Park, Hae-Woong (Department of Biotechnology, College of Engineering, Yonsei University)
Shrestha, Sony (Department of Bioresources Sciences, College of Natural Sciences, Andong National University)
Seo, Ji-Ae (Department of Bioresources Sciences, College of Natural Sciences, Andong National University)
Kim, Yong-Ook (Department of Biotechnology, College of Engineering, Yonsei University)
Shin, Chul-Soo (Department of Biotechnology, College of Engineering, Yonsei University)
Kim, Yong-Gyun (Department of Bioresources Sciences, College of Natural Sciences, Andong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.6, 2007 , pp. 968-978 More about this Journal
Abstract
A pathogenic nematode, Butlerius sp., was isolated from Oriental beetle, Blitopertha orientalis. The infective juveniles exhibited dose-as well as time-dependent entomopathogenicity on the larvae of B. orientalis. Two bacterial species, Providencia vermicola (KACC 91278) and Flavobacterium sp. (KACC 91279), were isolated from the infective juveniles and identified. P. vermicola outnumbered Flavobacterium sp. in the nematode host, in which the colony density of P. vermicola was found to be 21 times higher than that of Flavobacterium sp. However, when the two bacterial species were cocultured in culture media without the nematode host, they showed similar growth rates. Both bacteria induced significant entomopathogenicity against Spodoptera exigua larvae infesting economically important vegetable crops, where P. vermicola was more potent than Flavobacterium sp.
Keywords
Entomopathogenicity; Providencia vermicola; Flavobacterium; Butlerius; ITS; 16S rDNA;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Dowds, B. C. A. and A. Peters. 2002. Virulence mechanisms, pp. 79-98. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI Publishing, New York
2 Hunt, D. J. 1980. Butlerius macrospiculum n. sp. and Cylindrocorpus walkeri n. sp. (Nematoda: Diplogastroidea) from St. Lucia, West Indies. Revue Nematol. 3: 155-160
3 Lee, S., Y. Kim, and S. Han. 2000. An improved collecting method of the infective juveniles of the entomopathogenic nematode, Steinernema carpocapsae Weiser. Kor. J. Soil Zool. 5: 97-100
4 Mahar, A. N., M. Munir, S. Elawad, S. R. Gowen, and N. G. M. Hague. 2004. Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae. J. Zhejiang Univ. Sci. 5: 1183-1190   DOI   ScienceOn
5 Park, Y. and Y. Kim. 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 11: 1469-1476
6 Raymond, M. 1985. Presentation d'un programme d'analyse log-probit pour micro-ordinateur. Cah. ORSTOM. Ser. Ent. Med. Parasitol. 22: 117-121
7 Ribeiro, C., B. Duvic, P. Oliveira, A. Givaudan, F. Palha, N. Simoes, and M. Brehelin. 1999. Insect immunity - effects of factors produced by a nematobacterial complex on immunocompetent cells. J. Insect Physiol. 45: 677-685   DOI   ScienceOn
8 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning, A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
9 Cho, S. and Y. Kim. 2004. Hemocyte apoptosis induced by entomopathogenic bacteria, Xenorhabdus and Photorhabdus, in Bombyx mori. J. Asia-Pacific Entomol. 7: 195-200   DOI   ScienceOn
10 Hwang, S. Y., S. Paik, S. H. Park, H. S. Kim, I. S. Lee, S. P. Kim, W. K. Baek, M. H. Suh, T. K. Kwon, J. W. Park, J. B. Park, J. J. Lee, and S. I. Suh. 2003. N-Phenethyl-2- phenylacetamide isolated from Xenorhabdus nematophilus induced apoptosis through caspases activation and calpainmediated Bax cleavage in U937 cells. Int. J. Oncol. 22: 151-157
11 Humason, G. L. 1972. Animal Tissue Techniques, 3rd Ed. W. H. Freeman and Company, San Francisco, CA
12 Walsh, K. T. and J. M. Webster. 2003. Interaction of microbial populations in Steinernema (Steinernematidae, Nematoda) infected Galleria mellonella larvae. J. Invertebr. Pathol. 83: 118-126   DOI   ScienceOn
13 Lee, Y. O., J. H. Park, and J. K. Park. 2005. Microbial characterization of excessive growing biofilm in sewer lines using molecular technique. J. Microbiol. Biotechnol. 15: 938-945   과학기술학회마을
14 Stock, S. P., J. F. Campbell, and S. A. Nadler. 2001. Phylogeny of Steinernema Travassos, 1927 (Cephalobina: Steinernematidae) inferred from ribosomal DNA sequences and morphological characters. J. Parasitol. 87: 877-889   DOI
15 Kim, Y., D. Ji, S. Cho, and Y. Park. 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase $A_{2}$ to induce host immunodepression. J. Insect Physiol. 89: 258-264
16 Adams, B. J., A. M. Burnell, and T. O. Powers. 1998. A phylogenetic analysis of Heterorhabditis (Nemata: Rhabditidae) based on internal transcribed spacer 1 DNA sequence data. J. Nematol. 30: 22-39
17 Gho, H. G., S. G. Lee, B. P. Lee, K. M. Choi, and J. H. Kim. 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), on an artificial diet. Kor. J. Appl. Entomol. 29: 180-183
18 Cho, S. J., K. M. Cho, E. C. Shin, W. J. Lim, S. Y. Hong, B. R. Choi, J. M. Kang, S. M. Lee, Y. H. Kim, H. Kim, and H. D. Yun. 2006. 16S rDNA analysis of bacterial diversity in three fractions of cow rumen. J. Microbiol. Biotechnol. 16: 92-101   과학기술학회마을
19 Martens, E. C. and H. Goodrich-Blair. 2005. The Steinernema carpocapsae intestinal vesicle contains a subcellular structure with which Xenorhabdus nematophila associates during colonization initiation. Cell Microbiol. 7: 1723-1735   DOI   ScienceOn
20 Dunphy, G. B. and J. M. Webster. 1987. Partially characterized components of the epicuticle of dauer juvenile, Steinernema feltiae, and their influence on haemocyte activity in Galleria mellonella. J. Parasitol. 73: 584-588   DOI   ScienceOn
21 Brewer, M. J. and J. T. Trumble. 1989. Field monitoring for insecticide resistance in beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 82: 1520-1526   DOI
22 Weisburg, G. W., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703   DOI
23 Brillard, J., C. Ribeiro, N. Boemare, M. Brehelin, and A. Givaudan. 2001. Two distinct hemolytic activities in Xenorhabdus nematophila are active against immunocompetent insect cells. Appl. Environ. Microbiol. 67: 2515-2525   DOI   ScienceOn
24 Stanley, D. W. 2000. Eicosanoids in Invertebrate Signal Transduction Systems. Princeton University Press, Princeton, NJ
25 Schaad, N. M. 1988. Laboratory Guide for Identification of Plant Pathogenic Bacteria, 2nd Ed. APS Press, St. Paul, MN
26 Webster, J. M., G. Chen, and J. Li. 1998. Parasitic worms: An ally in the wax against the superbugs. Parasitol. Today 14: 161-163   DOI   ScienceOn
27 Forst, S., B. Dowds, N. Boemare, and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp.: Bugs that kill bugs. Annu. Rev. Microbiol. 51: 47-72   DOI   ScienceOn
28 Akhurst, R. J. 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121: 303-309
29 Paik, S., Y. H. Park, S. I. Suh, H. S. Kim, I. S. Lee, M. K. Park, C. S. Lee, and S. H. Park. 2001. Unusual cytotoxic phenethylamides from Xenorhabdus nematophilus. Bull. Korean Chem. Soc. 22: 372-374
30 Blaxter, M. L., P. De Ley, J. R. Garey, L. X. Liu, P. Scheldeman, A. Vierstraete, J. R. Vanflateran, L. Y. Mackey, M. Dorris, L. M. Frisse, J. T. Vida, and W. K. Thomas. 1998. A molecular framework for the phylum Nematoda. Nature 392: 71-75   DOI   ScienceOn
31 Holmes, B., R. J. Owen, and T. A. McMeekin. 1984. Genus Flavobacterium, pp. 353-361. In N. R. Krieg and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore, MD
32 Kaya, H. K. and R. Gaugler. 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38: 181-206   DOI   ScienceOn
33 Navon, A., S. Keren, L. Salame, and I. Glazer. 1998. An edible-to-insects calcium alginate gel as a carrier for entomopathogenic nematodes. Biocon. Sci. Tech. 8: 429- 437   DOI   ScienceOn
34 Holt, J. G., N. R. Krieg, P. H. A. Sneath, J. T. Staley, and S. T. Williams. 1994. Bergey's Manual of Determinative Bacteriology, 9th Ed. Williams & Wilkins, Baltimore, MD
35 Dunphy, G. B. and J. M. Webster. 1991. Antihemocytic surface components of Xenorhabdus nematophilus var. dutki and their modification by serum of nonimmune larvae of Galleria mellonella. J. Invertebr. Pathol. 58: 40- 51   DOI
36 Boemare, N. E. 2002. Biology, taxonomy and systematics of photorhabdus and xenorhabdus, pp. 35-56. In R. Gaugler (ed.). Entomopathogenic Nematology. CABI Publishing, New York, NY
37 Ji, D., Y. Yi, G. H. Kang, Y. H. Choi, P. Kim, N. I. Baek, and Y. Kim. 2004. Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239: 241-248   DOI   ScienceOn
38 Kaya, H. K. 1990. Soil ecology, pp. 215-231. In R. Gaugler and H. K. Kaya (eds.), Entomopathogenic Nematodes in Biological Control. CRC, Boca Raton, FL
39 Penner, J. L. 1984. Genus XII. Providencia, pp. 494-496, In N. R. Krieg and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore, MD
40 Aguillera, M. and G. Smart. 1993. Development, reproduction and pathogenicity of Steinernema scapterisci in monoxenic culture with different species of bacteria. J. Invertebr. Pathol. 62: 289-294   DOI   ScienceOn
41 Vrain, T. C., D. A. Wakarchuk, A. C. Levesque, and R. I. Hamilton. 1992. Intraspecific rDNA restriction fragment length polymorphism in the Xiphinema americanum group. Fund. Appl. Nematol. 15: 563-574
42 Somvanshi, V. S., E. Lang, S. Ganguly, J. Swiderski, A. K. Saxena, and E. Stackebrandt. 2006. A novel species of Xenorhabdus, family Enterobacteriaceae: Xenorhabdus indica sp. nov., symbiotically associated with entomopathogenic nematode Steinernema thermophilum Ganguly and Singh, 2000. Syst. Appl. Microbiol. 56: 629-633
43 Brenner, D. J. 1984. Family I. Enterobacteriaceae, pp. 408- 516. In N. R. Krieg and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 1. Williams & Wilkins, Baltimore, MD
44 Somvanshi, V. S., E. Lang, B. Straubler, C. Sproer, P. Schumann, S. Ganguly, A. K. Saxena, and E. Stackebrandt. 2006. Providencia vermicola sp. nov., isolated from infective juveniles of the entomopathogenic nematode Steinernema thermophilum. Int. J. Syst. Evol. Microbiol. 56: 629-633   DOI   ScienceOn
45 Benson, H. G. 1990. Microbiological Applications, 4th Ed. Wm. C. Brown Publishers, Dubuque, IA
46 Converse, V. and P. S. Grewal. 1998. Virulence of entomopathogenic nematodes to the Western masked chafer Cyclocephala hirta (Coleoptera: Scarabaeidae). J. Econ. Entomol. 91: 428-432   DOI
47 Dunphy, G. B. and J. M. Webster. 1984. Interaction of Xenorhabdus nematophilus subsp. nematophilus with the haemolymph of Galleria mellonella. J. Insect Physiol. 30: 883-889   DOI   ScienceOn
48 Jung, S. and Y. Kim. 2006. Synergistic effect of Xenorhabdus nematophila K1 and Bacillus thuringiensis subsp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Biol. Control 39: 201-209   DOI   ScienceOn
49 Jung, S. and Y. Kim. 2007. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth (Lepidoptera: Plutellae). J. Econ. Entomol. 100: 246-250   DOI   ScienceOn
50 Kim, J. S., J. Y. Choi, J. H. Chang, H. J. Shim, J. Y. Rho, B. R. Jin, and Y. H. Je. 2005. Characterization of an improved recombinant baculovirus producing polyhedra that contain Bacillus thuringiensis Cry1Ac crystal protein. J. Microbiol. Biotechnol. 15: 710-715   과학기술학회마을
51 Wang, Y., J. F. Campbell, and R. Gaugler. 1995. Infection of entomopathogenic nematodes Steinernema glaseri and Heterorhabditis bacteriophora against Popillia japonica (Coleoptera: Scarabaeidae) larvae. J. Invertebr. Pathol. 66: 178-184   DOI   ScienceOn
52 Van Laecke, K. and D. Degheele. 1991. Synergism of diflubenzuron and teflubenzuron in larvae of beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 84: 785-789   DOI
53 Grewal, P. S., E. E. Lewis, R. Gaugler, and J. F. Campbell. 1994. Host-finding behaviour as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108: 207-215   DOI
54 Jung, S. and Y. Kim. 2006. Synergistic effect of entomopathogenic bacteria (Xenorhabdus sp. and Photorhabdus temperata ssp. temperata) on the pathogenicity of Bacillus thuringiensis ssp. aizawai against Spodoptera exigua (Lepidoptera: Noctuidae). Environ. Entomol. 35: 1584- 1589   DOI   ScienceOn
55 Martens, E. C., K. Heungens, and H. Goodrich-Blair. 2003. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. J. Bacteriol. 185: 3147-3154   DOI   ScienceOn