Browse > Article

Characterization of Cyclofructans from Inulin by Saccharomyces cerevisiae Strain Displaying Cell-Surface Cycloinulooligosaccharide Fructanotransferase  

Kim, Hyun-Jin (Department of Biomaterial Control(BK21 Program), Dong-Eui University)
Lee, Jae-Hyung (Department of Biomaterial Control(BK21 Program), Dong-Eui University)
Kim, Hyun-Chul (Bioneer Corp.)
Lee, Jin-Woo (Department of Biotechnology, Dong-A University)
Kim, Yeon-Hee (Department of Biotechnology, Osaka University)
Nam, Soo-Wan (Department of Biomaterial Control(BK21 Program), Dong-Eui University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.4, 2007 , pp. 695-700 More about this Journal
Abstract
The cycloinulooligosaccharide fructanotransferase (CFTase) gene (cft) from Paenibacillus macerans (GenBank access code AF222787) was expressed on the cell surface of Saccharomyces cerevisiae by fusing with Aga2p linked to the membrane-anchored protein Aga1p. The surface display of CFTase was confirmed by immunofluorescence microscopy and enzymatic assay. The optimized reaction conditions of surface-displayed CFTase were as follows; pH, 8.0; temperature, $50^{\circ}C$; enzyme amount, 30 milliunit; substrate concentration, 5%; inulin source, Jerusalem artichoke. As a result of the reaction with inulin, cycloinulohexaose was produced as a major product along with cycloinuloheptaose and cycloinulooctaose as minor products.
Keywords
Cycloinulooligosaccharide fructanotransferase; Saccharomyces cerevisiae; cell surface display; cyclofructan; inulin;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Boder, E. T. and K. D. Wittrup. 1997. Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557   DOI   ScienceOn
2 Cho, B. K., M. C. Kieke, E. T. Boder, K. D. Wittrup, and D. M. Kranz. 1998. A yeast surface display system for the discovery of ligands that trigger cell activation. J. Immunol. Methods 220: 179-188   DOI
3 Cochran, J. R., Y. S. Kim, M. J. Olsen, R. Bhandari, and K. D. Wittrup. 2004. Domain-antibody epitope mapping through yeast surface display of epidermal growth factor receptor fragments. J. Immunol. Methods 287: 147-158   DOI
4 Ezaki, S., M. Tsukio, M. Takagi, and T. Imanaka. 1998. Display of heterologous gene products on the Escherichia coli cell surface as fusion proteins with flagellin. J. Ferment. Bioeng. 86: 500-503   DOI   ScienceOn
5 Ito, H. Y., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
6 Kawamura, M., T. Uchiyama, T. Kuramoto, Y. Tamura, and K. Mizutani. 1989. Formation of a cycloinulooligosaccharide from inulin by an extracellular enzyme of Bacillus circulans OKUMZ31B. Carbohydr. Res. 192: 83-90   DOI   ScienceOn
7 Kim, J. J., S. W. Kim, C. O. Jeon, J. Y Yun, H. S. Lee, and H. S. Ro. 2006. Screening of yeast diauxic promoters for production of foreign proteins. J. Microbiol. Biotechnol. 16: 1459-1463   과학기술학회마을
8 Lipke, P. N. and J. Kurjan. 1992. Sexual agglutination in budding yeasts: Structure, function, and regulation of adhesion glycoproteins. Microbiol. Rev. 56: 180-194
9 Murai, T., M. Ueda, H. Atomi, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Imanaka, and A. Tanaka. 1999. Development of an arming yeast strain for efficient utilization of starch by co-display of sequential amylolytic enzymes on the cell surface. Appl. Microbiol. Biotechnol. 51: 65-70   DOI   ScienceOn
10 Uchiyama, T., M. Kawamura, T. Uragami, and H. Okuno. 1993. Complexing of cycloinulo-oligosaccharides with metal ions. Carbohydr. Res. 241: 245-248   DOI
11 Yasuya, F., K. Satoshi, M. Ueda, A. Tanaka, J. Okada, Y. Morikawa, H. Fukuda, and A. Kondo. 2002. Construction of whole-cell biocatalyst for xylan degradation through cell-surface xylanase display in Saccharomyces cerevisiae. J. Mol. Catal. B: Enzym. 17: 189-195   DOI
12 Vandamme, E. J. and D. G Derycke. 1983. Microbial inulinase: Fermentation process, properties, and applications. Adv. Appl. Microbiol. 29: 139-176   DOI
13 Kim, H. Y. and Y. J. Choi. 2001. Molecular characterization of cyclo-inulooligosaccharide fructanotransferase from Bacillus macerans. Appl. Environ. Microbiol. 67: 995-1000   DOI   ScienceOn
14 Schreuder, M. P., S. Brekelmans, H. van den Ende, and F. M. Klis. 1993. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9: 399-409   DOI   ScienceOn
15 Kim, Y. H., S. W. Nam, and B. H. Chung. 1998. Simultaneous saccharification of inulin and ethanol fermentation by recombinant Saccharomyces cerevisiae secreting inulinase. Biotechnol. Bioproc. Eng. 3: 55-60   DOI
16 Kim, D. H., Y. J. Choi, S. K. Song, and J. W. Yun. 1997. Production of inulo-oligosaccharides using endo-inulinase from Pseudomonas sp. Biotechnol. Lett. 19: 369-371   DOI   ScienceOn
17 Sawada, M., T. Tanaka, Y. Takai, T. Hanafrsa, T. Taniguchi, M. Kawamura, and T. Uchiyama. 1991. The crystal structure of cycloinulohexaose produced from inulin by cycloinulooligosaccharide fructanotransferase. Carbohydr. Res. 217: 7-17   DOI
18 Kim, H. C., H. J. Kim, W. B. Choi, and S. W. Nam. 2006. Inulooligosaccharide production from inulin by Saccharomyces cerevisiae strain displaying cell-surface endoinulinase. J. Microbiol. Biotechnol. 16: 360-367   과학기술학회마을
19 Kim, H. Y and Y. J. Choi. 1998. Purification and characterization of cyclo-inulooligosaccharide fructanotransferase from Bacillus macerans CFC1. J. Microbiol. Biotechnol. 8: 251-257
20 Choi, J. H., J. I. Choi, and S. Y. Lee. 2005. Display of proteins on the surface of Escherichia coli by C-terminal deletion fusion to the Salmonella typhimurium OmpC. J. Microbiol. Biotechnol. 15: 141-146   과학기술학회마을
21 Ohta, K., S. Hamada, and T. Nakamura. 1993. Production of high concentrations of ethanol from inulin by simultaneous saccharification and fermentation using Aspergillus niger and Saccharomyces cerevisiae. Appl. Environ. Microbiol. 59: 729-733
22 Jeon, S. J., D. J. You, H. J. Kwon, S. Kanaya, N. Kunihiro, K. H. Kim, Y. H. Kim, and B. W. Kim. 2002. Cloning and characterization of cycloinulooligosacchride fructano-transferase (CFTase) from Bacillus polymyxa MGL21. J. Microbiol. Biotechnol. 12: 921-928
23 Murai, T., M. Ueda, H. Atomi, Y. Shibasaki, N. Kamasawa, M. Osumi, T. Kawaguichi, M. Arai, and A. Tanaka. 1997. Genetic immobilization of cellulase on the cell surface of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 48: 499-503   DOI   ScienceOn
24 Kim, H. C., J. H. Jeong, S. J. Jeon, W. B. Choi, and S. W. Nam. 2005. Expression of Paenibacillus macerans cycloinulooligosaccharide fructanotransferase in Saccharomyces cerevisiae. J. Life Sci. 15: 317-322   과학기술학회마을   DOI
25 Chiswell, D. J. and J. McCafferty. 1992. Phage antibodies: Will new 'coliclonal' antibodies replace monoclonal antibodies? Trends Biotechnol. 10: 80-84   DOI   ScienceOn
26 Kongruang, S., M. J. Han, C. I. Breton, and M. H. Penner. 2004. Quantitative analysis of cellulose-reducing ends. Appl. Biochem. Biotechnol. 113: 213-231   DOI   ScienceOn
27 Kobori, H., M. Sato, and M. Osumi. 1992. Relationship of actin organization to growth in the two forms of the dimorphic yeast Candida tropicalis. Protoplasma 167: 193-204   DOI
28 Cappellaro, C., R. R. Baldermann, and W. Tanner. 1994. Mating type-specific cell-cell recoginition of Saccharomyces cerevisiae: Cell wall attachment and active sites of a- and $\alpha$-agglutinin. EMBO J. 13: 4737-4744
29 Kanai, T., N. Ueki, T. Kawaguch, Y. Teranishi, H. Atomi, C. Tomorbaatar, M. Ueda, and A. Tanaka. 1997. Recombinant thermostable cycloinulooligosaccharide fructano-transferase produced by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 63: 4956-4960