Browse > Article

Effects of Inoculum Level and Pressure Pulse on the Inactivation of Clostridium sporogenes Spores by Pressure-Assisted Thermal Processing  

Ahn, Ju-Hee (Division of Biomaterials Engineering, School of Bioscience and Biotechnology, Kangwon National University)
Balasubramaniam, V.M. (Department of Food Science and Technology, The Ohio State University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.4, 2007 , pp. 616-623 More about this Journal
Abstract
The effects of initial concentration and pulsed pressurization on the inactivation of Clostridium sporogenes spores suspended in deionized water were determined during thermal processing $(TP;\;105^{\circ}C,\;0.1MPa)$ and pressure-assisted thermal processing $(PATP;\;105^{\circ}C\;and\;700MPa)$ treatments for 40 min and 5min holding times, respectively. Different inoculum levels $(10^4,\;10^6\;and\;10^8CFU/ml)$ of C. sporogenes spores suspended in deionized water were treated at $105^{\circ}C$ under 700MPa with single, double, and triple pulses. Thermally treated samples served as control. No statistical significances (p>0.05) were observed among all different inoculum levels during the thermal treatment, whereas the inactivation rates $(k_1\;and\;k_2)$ were decreased with increasing the initial concentrations of C. sporogenes spores during the PATP treatments. Double- and triple-pulsed pressurization reduced more effectively the number of C. sporogenes spores than single-pulse pressurization. The study shows that the spore clumps formed during the PATP may lead to an increase in pressure-thermal resistance, and multiple-pulsed pressurization can be more effective in inactivating bacterial spores. The results provide an interesting insight on the spore inactivation mechanisms with regard to inoculum level and pulsed pressurization.
Keywords
Clostridium sporogenes; spore inactivation; spore clumps; inoculum level; pulsed pressurization; pressure-assisted thermal processing;
Citations & Related Records

Times Cited By Web Of Science : 9  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Chen, H., R. D. Joerger, D. H. Kingsley, and D. G. Hoover. 2004. Pressure inactivation kinetics of phage $\lambda$ cl 857. J. Food Prot. 67: 505-511   DOI
2 Clouston, J. G. and P. A. Wills. 1969. Initiation of germination and inactivation of Bacillus pumilus spores by hydrostatic pressure. J. Bacteriol. 97: 684-690
3 Corradini, M. G. and M. Peleg. 2004. A model of non-isothermal degradation of nutrients, pigments and enzymes. J. Sci. Food Agric. 84: 217 -226   DOI   ScienceOn
4 Dixit, A., I. S. Alam, R. K. Dhaked, and L. Singh. 2005. Sporulation and heat resistance of spores from a Clostridium sp. RKD. J. Food Sci. 70: M367-M373   DOI
5 Fleischman, G J., S. Ravishankar, and V. M. Balasubramaniam. 2004. The inactivation of Listeria monocytogenes by pulsed electric field (PEF) treatment in a static chamber. Food Microbiol. 21: 91-95   DOI   ScienceOn
6 Furukawa, S., A. Nakahara, and I. Hayakawa. 2000. Effect of reciprocal pressurization on germination and killing of bacterial spores. Int. J. Food Sci. Technol. 35: 529-532   DOI   ScienceOn
7 Furukawa, S., S. Noma, S. Yoshikawa, H. Furuya, M. Shimoda, and I. Hayakawa. 2001. Effect of filtration of bacterial suspensions on the inactivation ratio in hydrostatic pressure treatment. J. Food Eng. 50: 59-61   DOI   ScienceOn
8 Hayakawa, I., T. Kanno, K. Yoshiyama, and Y. Fujio. 1994. Oscillatory compared with continuous high pressure sterilization on Bacillus stearothermophilus spores. J. Food Sci. 59: 164-167   DOI   ScienceOn
9 Meyer, R. S., K. L. Cooper, D. Knorr, and H. L. M. Lelieveld. 2000. High-pressure sterilization of foods. Food Technol. 54: 67-72
10 Norvak, J. S. and J. T. C. Yuan. 2004. The fate of Clostridium perfringens spores exposed to ozone and/or mild heat pretreatment on beef surfaces followed by modified atmosphere packaging. Food Microbiol. 21: 667-673   DOI   ScienceOn
11 Rajan, S., J. Ahn, V. M. Balasubramaniam, and A. E. Yousef. 2006. Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. J. Food Prot. 69: 853-860   DOI
12 San Martin, M. F., G. V. Barbosa-Canovas, and B. G. Swanson. 2002. Food processing by high hydrostatic pressure. Crit. Rev. Food Sci. Nutr. 46: 627-645
13 Wuytack, E. Y., J. Soons, F. Poschet, and C. W. Michiels. 2000. Comparative study of pressure- and nutrient-induced germination of Bacillus subtilis spores. Appl. Environ. Microbiol. 66: 257-261   DOI   ScienceOn
14 Leuschner, R. G. K., A. C. Weaver, and P. J. Lillford. 1999. Rapid particle size distribution analysis of Bacillus spore suspensions. Coll. Surf. B 13: 47-57   DOI   ScienceOn
15 Buzrul, S. and H. Alpas. 2004. Modeling the synergistic effect of high pressure and heat on inactivation kinetics of Listeria innocua: A preliminary study. FEMS Microbiol. Lett. 238: 29-36
16 Rajan, S., V. M. Balasubramaniam, and A. E. Yousef. 2006. Inactivation of Bacillus stearothermophilus spores in egg patties by pressure-assisted thermal processing. Lebensmittel-Wissenschaft Technologie 39: 844-851   DOI
17 Chen, H. and D. G. Hoover. 2003. Pressure inactivation kinetics of Yersinia enterocolitica ATCC 35669. Int. J. Food Microbiol. 87: 161-171   DOI
18 Furukawa, S., N. Narisawa, T. Watanabe, T. Kawarai, K. Myozen, S. Okazaki, H. Ogihara, and M. Yamasaki. 2005. Formation of spore clumps during heat treatment increases the heat resistance of bacterial spores. Int. J. Food Microbiol. 102: 107-111   DOI   ScienceOn
19 Sale, A. J. H., G. W. Gould, and W. A. Hamilton. 1970. Inactivation of bacterial spores by high hydrostatic pressure. J. Gen. Microbiol. 60: 323-334   DOI   ScienceOn
20 Marechal, P. A., I. M. de Marnanon, I. Poirier, and P. Gervais. 1999. The importance of the kinetics of application of physical stresses on the viability of microorganisms: Significance for minimal food processing. Trends Food Sci. Technol. 10: 15-20   DOI   ScienceOn
21 Margosch, D., M. G. Gazle, M. A. Ehrmann, and R. F. Vogel, 2004. Pressure inactivation of Bacillus endospores. Appl. Environ. Microbiol. 70: 7321-7328   DOI   ScienceOn
22 Reddy, N. R., H. M. Solomon, R. C. Tetzloff, and E. J. Rhodehamel. 2003. Inactivation of Clostridium botulinum Type A spores by high-pressure processing at elevated temperature. J. Food Prot. 66: 1402-1407   DOI
23 Furukawa, S., M. Shimoda, and I. Hayakawa. 2003. Mechanism of the inactivation of bacterial spores by reciprocal pressurization treatment. J. Appl. Microbiol. 94: 836-841   DOI   ScienceOn
24 Guerrero-Beltran, J. A. and G. V. Barbosa-Canovas, 2004. Advantages and limitation on processing foods by UV light. Food Sci. Tech. Inst. 10: 137-146   DOI   ScienceOn
25 Chen, H. and D. G Hoover. 2003. Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov. Food Sci. Emerging Tech. 4: 25-34   DOI   ScienceOn
26 Elez-Martinez, P., J. Escola-Hernandez, R. C. Soliva-Fortuny, and O. Martin-Belloso, 2005. Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields. Food Microbiol. 22: 311-319   DOI   ScienceOn
27 Wuytack, E. Y., S. Boven, and C. W. Michiels. 1998. Comparative study of pressure-induced germination of Bacillus subtilis spores at low and high pressure. Appl. Environ. Microbiol. 64: 3220-3224
28 Fugikawa, H. and K. Itoh. 1996. Tailing of thermal inactivation curve of Aspergillus niger spores. Appl. Environ. Microbiol. 62: 3745-3749
29 Furukawa, S., S. Noma, M. Shimoda, and I. Hayakawa. 2002. Effect of initial concentration of bacterial suspensions on their inactivation by high hydrostatic pressure. Int. J. Food Sci. Technol. 37: 573-577   DOI   ScienceOn
30 Xiong, R., G. Xie, A. E. Edmondson, and M. A. Sheard. 1999. A mathematical model for bacterial inactivation. Int. J. Food Microbiol. 46: 45-55   DOI   ScienceOn
31 Clouston, J. G. and P. A. Wills. 1970. Kinetics of initiation of germination of Bacillus pumilus spores by hydrostatic pressure. J. Bacteriol. 103: 140-143
32 Busta, F. F., T. V. Suslow, M. E. Parish, L. R. Beuchat, J. M. Farber, E. H. Garrett, and L. J. Harris. 2003. The use of indicators and surrogate microorganisms for the evaluation of pathogens in fresh and fresh-cut produce. Comp. Rev. Food Sci. Food Safe. 2: 179-185   DOI
33 Whiting, R. C., S. Sackitey, S. Calderone, Y. K. Morely, and J. G. Phillips. 1996. Model for the survival of Staphylococcus aureus in nongrowth environments. Int. J. Food Microbiol. 31: 231-243   DOI
34 Rodriguez, A. C., J. W. Larkin, J. Dunn, E. Patazca, N. R. Reddy, R. Alvarez-Medina, and G. J. Fleischman. 2004. Model of the inactivation of bacterial spores by moist heat and high pressure. J. Food Sci. 69: 367-373   DOI   ScienceOn
35 Ross, A. I. V., M. W. Griffiths, G. S. Mittal, and H. C. Deeth. 2003. Combining nonthermal technologies to control foodborne microorganisms. Int. J. Food Microbiol. 89: 125-138   DOI
36 Hauben, K. J. A., K. Bernaerts, and C. W. Michiels. 1998. Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure. J. Appl. Microbiol. 85: 678-684   DOI   ScienceOn
37 Oh, S. and M.-J. Moon. 2003. Inactivation of Bacillus cereus spores by high hydrostatic pressure at different temperatures. J. Food Prot. 66: 599-603   DOI
38 Baranyi, J., A. Jones, C. Walker, A. Kaloti, T. P. Robinson, and B. M. MacKey. 1996. A combined model for growth and subsequent thermal inactivation of Brochothrix thermosphacta. Appl. Environ. Microbiol. 62: 1029-1035