Browse > Article

Enzymatic Characterization and Substrate Specificity of Thermostable $\beta-Glycosidase$ from Hyperthermophilic Archaea, Sulfolobus shibatae, Expressed in E. coli  

Park, Na-Young (Department of Food Science and Biotechnology, Graduate School of Biotechnology & Institute of Life Sciences and Resources, KyungHee University)
Cha, Jae-Ho (Department of Microbiology, Pusan National University)
Kim, Dae-Ok (Department of Food Science and Biotechnology, Graduate School of Biotechnology & Institute of Life Sciences and Resources, KyungHee University)
Park, Cheon-Seok (Department of Food Science and Biotechnology, Graduate School of Biotechnology & Institute of Life Sciences and Resources, KyungHee University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.3, 2007 , pp. 454-460 More about this Journal
Abstract
Enzymatic properties and substrate specificity of recombinant $\beta-glycosidases$ from a hyperthermophilic archaeon, Sulfolobus shibatae (rSSG), were analyzed. rSSG showed its optimum temperature and pH at $95^{\circ}C$ and pH 5.0, respectively. Thermal inactivation of rSSG showed that its half-life of enzymatic activity at $75^{\circ}C$ was 15 h whereas it drastically decreased to 3.9 min at $95^{\circ}C$. The addition of 10 mM of $MnCl_2$ enhanced the hydrolysis activity of rSSG up to 23% whereas most metal ions did not show any considerable effect. Dithiothreitol (DTT) and 2-mercaptoethanol exhibited significant influence on the increase of the hydrolysis activity of rSSG rSSG apparently preferred laminaribiose $(\beta1\rightarrow3Glc)$, followed by sophorose $(\beta1\rightarrow2Glc)$, gentiobiose $(\beta1\rightarrow6Glc)$, and cellobiose $(\beta1\rightarrow4Glc)$. Various. intermolecular transfer products were formed by rSSG in the lactose reaction, indicating that rSSG prefers lactose as a good acceptor as well as a donor. The strong intermolecular transglycosylation activity of rSSG can be applied in making functional oligosaccharides.
Keywords
$\beta-Glycosidase$; Sulfolobus shibatae; substrate specificity; transglycosylation reaction;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Bhatia, Y., S. Mishra, and V. S. Bisaria. 2002. Microbial $\beta$glucosidases: Cloning, properties, and applications. Crit. Rev. Biotechnol. 22: 375-407   DOI   ScienceOn
2 Blount, Z. D. and D. W. Grogan. 2005. New insertion sequences of Sulfolobus: Functional properties and implications for genome evolution in hyperthermophilic archaea. Mol. Microbiol. 55: 312-325   DOI   ScienceOn
3 Bruins, M. E., A. E. Janssen, and R. M. Boom. 2001. Thermozymes and their applications: A review of recent literature and patents. Appl. Biochem. Biotechnol. 90: 155- 186   DOI   ScienceOn
4 Cho, S. W., J. Y. Ahn, J. H. Bahn, S. G. Jeon, J. S. Park, K. S. Lee, and S. Y. Choi. 2000. Production and characterization of monoclonal antibodies to glutamate dehydrogenase from thermophile Sulfolobus solfataricus. J. Microbiol. Biotechnol. 10: 587-594
5 Choi, J. J., J. W. Park, H. Shim, S. Lee, M. Kwon, J.-S. Yang, H. Hwang, and S.-T. Kwon. 2006. Cloning, expression, and characterization of a hyperalkaline phosphatase from the Thermophilic bacterium Thermus sp. T351. J. Microbiol. Biotechnol. 16: 272-279   과학기술학회마을
6 Dion, M., L. Fourage, J. N. Hallet, and B. Colas. 1999. Cloning and expression of a $\beta$-glycosidase gene from Thermus thermophilus. Sequence and biochemical characterization of the encoded enzyme. Glycoconj. J. 16: 27-37   DOI   ScienceOn
7 Goyal, K., P. Selvakumar, and K. Hayashi. 2001. Characterization of a thermostable $\beta$-glucosidase (BglB) from Thermotoga maritima showing transglycosylation activity. J. Mol. Cataly. B Enzym. 15: 45-53   DOI
8 Park, T. H., K. W. Choi, C. S. Park, S. B. Lee, H. Y. Kang, K. J. Shon, J. S. Park, and J. Cha. 2005. Substrate specificity and transglycosylation catalyzed by a thermostable $\beta$-glucosidase from marine hyperthermophile Thermotoga neapolitana. Appl. Microbiol. Biotechnol. 69: 411-422   DOI   ScienceOn
9 Petzelbauer, I., A. Reiter, B. Splechtna, P. Kosma, and B. Nidetzky. 2000. Transgalactosylation by thermostable $\beta$-glycosidases from Pyrococcus furiosus and Sulfolobus solfataricus. Binding interactions of nucleophiles with the galactosylated enzyme intermediate make major contributions to the formation of new $\beta$-glycosides during lactose conversion. Eur. J. Biochem. 267: 5055-5066   DOI   ScienceOn
10 Raasch, C., W. Streit, J. Schanzer, M. Bibel, U. Gosslar, and W. Liebl. 2000. Thermotoga maritima AglA, an extremely thermostable $NAD^{+}$-, $Mn^{2+}$-, and thiol-dependent $\alpha$-glucosidase. Extremophiles 4: 189-200   DOI   ScienceOn
11 Vieille, C. and G. J. Zeikus. 2001. Hyperthermophilic enzymes: Sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 65: 1-43   DOI   ScienceOn
12 Yang, S. J., H. S. Lee, C. S. Park, Y. R. Kim, T. W. Moon, and K. H. Park. 2004. Enzymatic analysis of an amylolytic enzyme from the hyperthermophilic archaeon Pyrococcus furiosus reveals its novel catalytic properties as both an $\alpha$-amylase and a cyclodextrin-hydrolyzing enzyme. Appl. Environ. Microbiol. 70: 5988-5995   DOI   ScienceOn
13 Yoo, J. S., K. W. Han, H. K. Kim, M. H. Kim, and S. T. Kwon. 2000. Purification and characterization of a thermostable $\beta$-glycosidase from Thermus caldophilus GK24. J. Microbiol. Biotechnol. 10: 638-642
14 Bang, B. Y., H. J. Kim, H. Y. Kim, M. Y. Baik, S. C. Ahn, C. H. Kim, and C. S. Park. 2006. Cloning and overexpression of 4-$\alpha$-glucanotransferase from Thermus brockianus (TBGT) in E. coli. J. Microbiol. Biotechnol. 16: 1809-1813   과학기술학회마을
15 Pisani, F. M., R. Rella, C. A. Raia, C. Rozzo, R. Nucci, A. Gambacorta, M. De Rosa, and M. Rossi. 1990. Thermostable $\beta$-galactosidase from the archaebacterium Sulfolobus solfataricus. Purification and properties. Eur. J. Biochem. 187: 321-328   DOI   ScienceOn
16 Belancic, A., Z. Gunata, M. J. Vallier, and E. Agosin. 2003. $\beta$-Glucosidase from the grape native yeast Debaryomyces vanrijiae: Purification, characterization, and its effect on monoterpene content of a Muscat grape juice. J. Agric. Food Chem. 51: 1453-1459   DOI   ScienceOn
17 Haki, G. D. and S. K. Rakshit. 2003. Developments in industrially important thermostable enzymes: A review. Bioresour. Technol. 89: 17-34   DOI   ScienceOn
18 Kengen, S. W. M., E. J. Luesink, A. J. M. Stams, and A. J. B. Zehnder. 1993. Purification and characterization of an extremely thermostable $\beta$-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus. Eur. J. Biochem. 213: 305-312   DOI   ScienceOn
19 Ciaramella, M., F. M. Pisani, and M. Rossi. 2002. Molecular biology of extremophiles: Recent progress on the hyperthermophilic archaeon Sulfolobus. Antonie Van Leeuwenhoek 81: 85-97   DOI   ScienceOn
20 Egorova, K. and G. Antranikian. 2005. Industrial relevance of thermophilic Archaea. Curr. Opin. Microbiol. 8: 649- 655   DOI   ScienceOn
21 Atomi, H. 2005. Recent progress towards the application of hyperthermophiles and their enzymes. Curr. Opin. Chem. Biol. 9: 166-173   DOI   ScienceOn
22 Ahn, S.-H., S.-H. Jeong, J.-M. Kim, Y.-O. Kim, S.-J. Lee, and I.-S. Kong. 2005. Molecular cloning and characterization of alkaliphilic phospholipase B (VFP58) from Vibrio fluvialis. J. Microbiol. Biotechnol. 15: 354-361   과학기술학회마을
23 Xiangyuan, H., Z. Shuzheng, and Y. Shoujun. 2001. Cloning and expression of thermostable $\beta$-glycosidase gene from Thermus nonproteolyticus HG102 and characterization of recombinant enzyme. Appl. Biochem. Biotechnol. 94: 243- 255   DOI   ScienceOn
24 Ducret, A., M. Trani, and R. Lortie. 2002. Screening of various glycosidases for the synthesis of octyl glucoside. Biotechnol. Bioeng. 77: 752-757   DOI   ScienceOn
25 Lodge, J. A., T. Maier, W. Liebl, V. Hoffmann, and N. Strater. 2003. Crystal structure of Thermotoga maritima $\alpha$-glucosidase AglA defines a new clan of $NAD^{+}$-dependent glycosidases. J. Biol. Chem. 278: 19151-19158   DOI   ScienceOn
26 Gabelsberger, J., W. Liebl, and K. H. Schleifer. 1993. Purification and properties of recombinant $\beta$-glucosidase of the hyperthermophilic bacterium Thermotoga maritima. Appl. Microbiol. Biotechnol. 40: 44-52
27 Kang, S. K., K. K. Cho, J. K. Ahn, S. H. Kang, K. H. Han, H. G. Lee, and Y. J. Choi. 2004. Cloning and expression of thermostable $\beta$-glycosidase gene from Thermus filiformis Wai33 A1 in Escherichia coli and enzyme characterization J. Microbiol. Biotechnol. 14: 584-592
28 Esen, A. 1993. $\beta$-Glucosidases: Overview, pp. 1-14. In Esen, A. (ed.), $\beta$-Glucosidases: Biochemistry and Molecular Biology. American Chemical Society, Washington, DC
29 Choi, J. Y., J. O. Ahn, S. I. Kim, and H.-J. Shin. 2006. Expression of thermostable $\alpha$-glucosidase from Thermus caldophilus GK24 in recombinant Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 16: 2000-2003   과학기술학회마을
30 Ezaki, S., K. Miyaoku, K. Nishi, T. Tanaka, S. Fujiwara, M. Takagi, H. Atomi, and T. Imanaka. 1999. Gene analysis and enzymatic properties of thermostable $\beta$-glycosidase from Pyrococcus kodakaraensis KOD1. J. Biosci. Bioeng. 88: 130-135   DOI   ScienceOn
31 Chen, L., K. Brugger, M. Skovgaard, P. Redder, Q. She, E. Torarinsson, B. Greve, M. Awayez, A. Zibat, H. P. Klenk, and R. A. Garrett. 2005. The genome of Sulfolobus acidocaldarius, a model organism of the Crenarchaeota. J. Bacteriol. 187: 4992-4999   DOI   ScienceOn