Browse > Article

Production of Acyl-Homoserine Lactone Quorum-Sensing Signals is Wide-Spread in Gram-Negative Methylobacterium  

Poonguzhall, Poonguzhall (Department of Agricultural Chemistry, Chungbuk National University)
Selvaraj, Selvaraj (Department of Agricultural Chemistry, Chungbuk National University)
Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University)
Sa, Tongmin (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.2, 2007 , pp. 226-233 More about this Journal
Abstract
Members of Methylobacterium, referred as pink-pigmented facultative methylotrophic bacteria, are frequently associated with terrestrial and aquatic plants, tending to form aggregates on the phyllosphere. We report here that the production of autoinducer molecules involved in the cell-to-cell signaling process, which is known as quorum sensing, is common among Methylobacterium species. Several strains of Methylobacterium were tested for their ability to produce N-acyl-homoserine lactone (AHL) signal molecules using different indicators. Most strains of Methylobacterium tested could elicit a positive response in Agrobacterium tumefaciens harboring lacZ fused to a gene that is regulated by autoinduction. The synthesis of these compounds was cell-density dependent, and the maximal activity was reached during the late exponential to stationary phases. The bacterial extracts were separated by thin-layer chromatography and bioassayed with A. tumefaciens NTI (traR, tra::lacZ749). They revealed the production of various patterns of the signal molecules, which are strain dependent. At least two signal molecules could be detected in most of the strains tested, and comparison of their relative mobilities suggested that they are homologs of N-octanoyl-$_{DL}$-homoserine lactone ($C_8-HSL$) and N-decanoyl-$_{DL}$-homoserine lactone ($C_{10}-HSL$).
Keywords
Quorum sensing; Methylobacterium; N-acyl-homoserine lactone; thin-layer chromatography;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Dong, Y. H., J. L. Xu, X. Z. Li, and L. H. Zhang. 2001. Aii, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc. Natl. Acad. Sci. USA 97: 3526-3531
2 Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
3 Madhaiyan, M., S. Poonguzhali, M. Senthilkumar, S. Seshadri, H. Y. Chung, J. C. Yang, S. P. Sundaram, and T. M. Sa. 2004. Growth promotion and induction of systemic resistance in rice cultivar Co-47 (Oryza sativa L.) by Methylobacterium spp. Bot. Bull. Acad. Sin. 45: 315-324
4 Miller, J. H. 1972. Assay of $\beta$-galactosidase, pp. 352-355. In: Experiments of Molecular Genetics. Cold Spring Harbour Laboratory Press, New York
5 Newton, J. A. and R. G. Fray. 2004. Integration of environmental and host-derived signals with quorum sensing during plant-microbe interactions. Cell Microbiol. 6: 213- 224   DOI   ScienceOn
6 Piper, K. R., B. V. S. Bodman, and S. K. Farrand. 1993. Conjugation factor of Agrobacterium tumefaciens Ti plasmid transfer by autoinduction. Nature 362: 448-450   DOI   ScienceOn
7 Rosemeyer, V., J. Michiels, C. Verreth, and J. Vanderleyden. 1998. luxI and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris. J. Bacteriol. 180: 815-821
8 Ryu, J. H., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi, K. A. Kim, R. Anandham, J. C. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622- 1628   과학기술학회마을
9 Sy, A., E. Girud, P. Jourand, N. Garcia, A. Willems, P. De Lajudie, Y. Prin, M. Neyra, M. Gills, B. M. Catherine, and B. Dreyfus. 2001. Methylotrophic Methylobacterium bacteria nodulate and fix atmospheric nitrogen in symbiosis with legumes. J. Bacteriol. 183: 214-220   DOI   ScienceOn
10 Winson, M. K., M. Camara, A. Latifi, M. Foglino, S. R. Chhabra, M. Daykin, M. Bally, V. Chapon, G. P. C. Salmond, B. W. Bycroft, A. Lazdunski, G. S. A. B. Stewart, and P. Williams. 1995. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 92: 9427-9431
11 Doronina, N. V., Y. A. Trotsenko, B. B. Kuznetsov, T. P. Tourova, and M. S. Salkinoja-Salonen. 2002. Methylobacterium suomiense sp. nov. and Methylobacterium lusitanum sp. nov., aerobic, pink-pigmented, facultatively methylotrophic bacteria. Int. J. Syst. Evol. Microbiol. 52: 773-776   DOI   ScienceOn
12 Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192   과학기술학회마을
13 Whittenbury, R., S. L. Davies, and J. F. Wilkinson.1970. Enrichment, isolation and some properties of methaneutilizing bacteria. J. Gen. Microbiol. 61: 205-218   DOI   ScienceOn
14 Bousfield, I. J. and P. N. Green. 1985. Reclassification of bacteria of the genus Protomonas Urakami and Komagata 1984 in the genus Methylobacterium (Patt, Cole, and Hanson) emend. Green and Bousfield 1983. Int. J. Syst. Bacteriol. 35: 209   DOI
15 Corpe, W. A. 1985. A method for detecting methylotrophic bacteria on solid surfaces. J. Microbiol. Methods 3: 215- 221   DOI   ScienceOn
16 Green, P. N. 1992. The genus Methylobacterium, pp. 2342- 2349. In Balows, A., Trüper, H. G., Dworkin, M., Harder, W. and Schleifer, K. H. (eds.), The Prokaryotes, 2nd Ed., vol. III. Springer-Verlag, New York, U.S.A
17 Lee, H. Y., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. B. Hoon, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079   과학기술학회마을
18 Madhaiyan, M., S. Poonguzhali, J. H. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminasecontaining Methylobacterium fujisawaense. Planta 224: 268-278   DOI   ScienceOn
19 McClean, K. H., M. K. Winson, L. Fish, A. Taylor, S. R. Chhabra, M. Camara, M. Daykin, J. H. Lamb, S. Swift, B. W. Bycroft, G. S. A. B. Stewart, and P. Williams. 1997. Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acyl homoserine lactones. Microbiology 143: 3703-3711   DOI   ScienceOn
20 Wagner-Döbler, I., V. Thiel, L. Eberl, M. Allgaier, A. Bodor, S. Meyer, S. Ebner, A. Hennig, R. Pukall, and S. Schulz. 2005. Discovery of complex mixtures of novel long-chain quorum sensing signals in free-living and host associated marine Alphaproteobacteria. Chembiochem 6: 2195-2206   DOI   ScienceOn
21 Patt, T. E., G. C. Cole, and R. S. Hanson. 1976. Methylobacterium, a new genus of facultatively methylotrophic bacteria. Int. J. Syst. Bacteriol. 26: 226-229   DOI
22 Throup, J. P., M. Camara, G. S. Briggs, M. K. Winson, S. R. Chhabra, B. W. Bycroft, P. Williams, and G. S. A. B. Stewart. 1995. Characterization of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two Nacylhomoserine lactone signal molecules. Mol. Microbiol. 17: 345-356   DOI   ScienceOn
23 Chilton, M. D., T. C. Currier, S. K. Farrand, A. J. Bendich, M. P. Gordon, and E. W. Nester. 1974. Agrobacterium tumefaciens and P58 bacteriophage DNA not detected in crown gall tumour DNA. Proc. Natl. Acad. Sci. USA 71: 3672-3676
24 Wood, A. P., D. P. Kelly, I. R. McDonald, S. L. Jordan, T. D. Morgan, S. Khan, J. C. Murrell, and E. Borodina. 1998. A novel pink-pigmented facultative methylotroph, Methylobacterium thiocyanatum sp. nov., capable of growth on thiocyanate or cyanate as sole nitrogen sources. Arch. Microbiol. 169: 148-158   DOI   ScienceOn
25 Green, P. N., I. J. Bousfield, and D. Hood. 1988. Three new Methylobacterium species: M. rhodesianum sp. nov., M. zatmanii sp. nov., and M. fujisawaense sp. nov. Int. J. Syst. Bacteriol. 38: 124-127   DOI
26 Sy, A., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252   DOI   ScienceOn
27 Omer, Z. S., R. Tombolini, A. Broberg, and B. Gerhardson. 2004. Indole-3-acetic acid production by pink-pigmented facultative methylotrophic bacteria. Plant Growth Regul. 43: 93-96   DOI
28 Doronina, N. V., Y. A. Trotsenko, T. P. Tourova, B. B. Kuznetsov, and T. Leisinger. 2000. Methylopila helvetica sp. nov. and Methylobacterium dichloromethanicum sp. nov. - novel aerobic facultatively methylotrophic bacteria utilizing dichloromethane. Syst. Appl. Microbiol. 23: 210-218   DOI   ScienceOn
29 Glick, B. R. 1995. The enhancement of plant growth by freeliving bacteria. Can. J. Microbiol. 41: 109-117   DOI   ScienceOn
30 Green, P. N. and I. J. Bousfield. 1983. Emendation of Methylobacterium Patt, Cole, and Hanson 1976; Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig.; Methylobacterium radiotolerans (Ito & Iizuka 1971) comb. nov., corrig.; and Methylobacterium mesophilicum (Austin & Goodfellow 1979) comb. nov. Int. J. Syst. Bacteriol. 33: 875-877   DOI
31 McLean, R. J. C., L. S. Pierson, and C. Fuqua. 2004. A simple screening protocol for the identification of quorum signal antagonists. J. Microbiol. Methods 58: 351-360   DOI   ScienceOn
32 Shaw, P. D., G. Ping, S. L. Daly, C. Cha, J. E. Cronan, K. L. Rinehart, and S. K. Farrand. 1997. Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc. Natl. Acad. Sci. USA 94: 6036- 6041
33 Cha, C., P. Gao, Y. C. Chen, P. D. Shaw, and S. K. Farrand. 1998. Production of acyl-homoserine lactone quorumsensing signals by Gram-negative plant-associated bacteria. Mol. Plant-Microbe Interact. 11: 1119-1129   DOI   ScienceOn
34 Ravn, L., A. B. Christensen, S. Molin, M. Givskov, and L. Gram. 2001. Methods for identifying and quantifying acylated homoserine lactones produced by Gram-negative bacteria and their application in studies of AHL-production kinetics. J. Microbiol. Methods 44: 239-251   DOI   ScienceOn
35 Steidle, A., K. Sigl, R. Schuhegger, A. Ihring, M. Schmid, S. Gantner, M. Stoffels, K. Riedel, M. Givskov, A. Hartmann, C. Langebartels, and L. Eberl. 2001. Visualization of Nacylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67: 5761-5770   DOI   ScienceOn
36 Gallego, V., M. T. Garcia, and A. Ventosa. 2005. Methylobacterium hispanicum sp. nov. and Methylobacterium aquaticum sp. nov., isolated from drinking water. Int. J. Syst. Evol. Microbiol. 55: 281-287   DOI   ScienceOn
37 Penalver, C. G. N., D. Morin, F. Cantet, O. Saurel, A. Milon, and J. A. Vorholt. 2006. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580: 561-567   DOI   ScienceOn