Browse > Article

R-Type Pyocin is Required for Competitive Growth Advantage Between Pseudomonas aeruginosa Strains  

Heo Yun-Jeong (Department of Life Science, Sogang University)
Chung In-Young (Department of Life Science, Sogang University)
Choi, Kelly B. (Department of Life Science, Sogang University)
Cho, You-Hee (Department of Life Science, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 180-185 More about this Journal
Abstract
R-type pyocin is a bacteriophage tail-shaped bacteriocin produced by Pseudomonas aeruginosa, but its physiological roles are relatively unknown. Here we describe a role of R-type pyocin in the competitive growth advantages between P aeruginosa strains. Partial purification and gene disruption revealed that the major killing activity from the culture supernatant of PA14 is attributed to R-type pyocin, neither F-type nor S-type pyocins. These findings may provide insight into the forces governing P aeruginosa population dynamics to promote and maintain its biodiversity.
Keywords
R-Type pyocin; Pseudomonas aeruginosa; competition; population;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Daw, M. A. and F. R. Falkiner. 1997. Bacteriocins: Nature, function and structure. Micron. 27: 467-479   DOI   ScienceOn
2 Duport, C., C. Baysse, and Y. Michel-Briand. 1995. Molecular characterization of pyocin S3, a novel S-type pyocin from Pseudomonas aeruginosa. J. Biol. Chem. 270: 8920-8927   DOI   ScienceOn
3 Heo, Y.-J., K.S. Ko, J.-H. Song, and Y.-H. Cho. 2005. Profiling pyocins and competitive growth advantages of various Pseudomonas aeruginosa strains. J. Microbiol. Biotech. 14: 367-372
4 Hoang, T. T., R. R. Karkhoff-Schweizer, A. J. Kutchma, and H. P. Schweizer. 1998. A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212: 77-86   DOI   ScienceOn
5 Kerr, B., M. A. Riley, M. W. Feldman, and B. J. M. Bohannan. 2002. Local dispersal promotes biodiversity in a real-life game of rock-paper-scissors. Nature 418: 171-174   DOI   ScienceOn
6 Kim, J. D. and C. G. Lee. 2006. Influence of extracellular products from Haematococcus pluvialis on growth and bacteriocin production by three species of Lactobacillus. J. Microbiol. Biotech. 16: 849-854   과학기술학회마을
7 Kuroda, K. and M. Kageyama. 1979. Biochemical properties of a new flexuous bacteriocin, pyocin F1, produced by Pseudomonas aeruginosa. J. Biochem. 85: 7-19   DOI
8 Matsui, H., Y. Sano, H. Ishihara, and T. Shinomiya. 1993. Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J. Bacteriol. 175: 1257-1263   DOI
9 Michel-Briand, Y. and C. Baysse. 2002. The pyocins of Pseudomonas aeruginosa. Biochimie. 84: 499-510   DOI   ScienceOn
10 Montgomery, K. T., G. Grills, L. Li, W. A. Brown, J. Decker, R. Elliot, L. J. Gendal, K. Osborn, A. Perera, C. Xi, P. Juels, D. Lee, N. T. Liberati, J. He, S. Miyata, L. G. Rahme, M. Saucier, J. M. Urbach, F. M. Ausubel, and R. Kucherlapati. 2002. Pseudomonas aeruginosa strain UCBPP-PA14 whole genome shotgun sequencing project. Direct submission. Accession numbers AABQ07000000-AABQ07000005 [Online.] http://www.ncbi.nlm.nih.gov
11 Nakayama, K., S. Kanaya, M. Ohnishi, Y. Terawaki, and T. Hayashi. 1999. The complete nucleotide sequence of phage CTX, a cytotoxin-converting phage of Pseudomonas aeruginosa: Implications for phage evolution and horizontal gene transfer via bacteriophages. Mol. Microbiol. 31: 399- 419   DOI   ScienceOn
12 Reeves, P. 1965. The bacteriocins. Bacteriol. Rev. 29: 24- 45
13 Yokota, S., T. Hayashi, and H. Matsumoto. 1994. Identification of the lipopolysaccharide core region as the receptor site for a cytotoxin-converting phage, $\phi$CTX, of Pseudomonas aeruginosa. J. Bacteriol. 176: 5262-5269   DOI
14 Seo, Y. and D. R. Galloway. 1990. Purification of the pyocin S2 complex from Pseudomonas aeruginosa PAO1: Analysis of DNase activity. Biochem. Biophys. Res. Commun. 172: 455-461   DOI   ScienceOn
15 Dyke, J. and R. S. Berk. 1974. Growth inhibition and pyocin receptor properties of endotoxin from Pseudomonas aeruginosa. Proc. Soc. Exp. Biol. Med. 145: 1405-1408
16 Ishii, S. I., Y. Nishi, and F. Egami. 1965. The fine structure of a pyocin. J. Mol. Biol. 13: 428-431   DOI
17 Lee, J. H., M. J. Kim, D. W. Jeong, M. J. Kim, J. H. Kim, H. C. Chang, D. K. Chung, H. Y. Kim, K. H. Kim, and H. J. Lee. 2005. Identification of bacteriocin-producing Lactobacillus paraplantarum first isolated from Kimchi. J. Microbiol. Biotechnol. 15: 428-433   과학기술학회마을
18 Bodey, G. P., R. Bolivar, V. Fainstein, and L. Jadeja. 1983. Infections caused by Pseudomonas aeruginosa. Rev. Infect. Dis. 5: 279-313   DOI
19 Parret, A. H. and R. De Mot. 2002. Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other gammaproteobacteria. Trends Microbiol. 10: 107-112   DOI   ScienceOn
20 Wolfgang, M. C., B. R. Kulasekara, X. Liang, D. Boyd, K. Wu, Q. Yang, C. G. Miyada, and S. Lory. 2003. Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 100: 8484-8489
21 He, J., R. L. Baldini, E. Deziel, M. Saucier, Q. Zhang, N. T. Liberati, D. Lee, J. Urbach, H. M. Goodman, and L. G. Rahme. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. USA 101: 2530-2505
22 Lee, Y. H. 2006. Promotion of bone nodule formation and inhibition of growth and invasion of Streptococcus mutans by Weissella kimchii PL9001. J. Microbiol. Biotechnol. 16: 531-537   과학기술학회마을
23 Rainey, P. B. and M. Travisano. 1998. Adaptive radiation in a heterogeneous environment. Nature 394: 69-72   DOI   ScienceOn
24 Riley, M. A. and J. E. Wertz. 2002. Bacteriocins: Evolution, ecology, and application. Annu. Rev. Microbiol. 56: 117- 137   DOI   ScienceOn
25 Webb, J. S., L. S. Thompson, S. James, T. Charlton, T. Tolker-Nielsen, B. Koch, M. Givskov, and S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185: 4585-4592   DOI   ScienceOn
26 Nakayama, K., K. Takashima, H. Ishihara, T. Shinomiya, M. Kageyama, S. Kanaya, M. Ohnishi, T. Murata, H. Mori, and T. Hayashi. 2000. The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol. Microbiol. 38: 213-231   DOI   ScienceOn
27 Kirkup, B. C. and M. A. Riley. 2004. Antibiotic-mediated antagonism leads to a bacterial game of rock-paper-scissors in vivo. Nature 428: 412-414   DOI   ScienceOn
28 Potvin, E., D. E. Lehoux, I. Kukavica-Ibrulj, K. L. Richard, F. Sanschagrin, G. W. Lau, and R.C. Levesque. 2003. In vivo functional genomics of Pseudomonas aeruginosa for high-throughput screening of new virulence factors and antibacterial targets. Environ. Microbiol. 5: 1294-1308   DOI   ScienceOn
29 Uratani, Y. and T. Hoshino. 1984. Pyocin R1 inhibits active transport in Pseudomonas aeruginosa and depolarizes membrane potential. J. Bacteriol. 157: 632-636