Browse > Article

Cadaverine Protects Vibrio vulnificus from Superoxide Stress  

Kang, In-Hye (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim, Ju-Sim (Department of Microbiology, University of Colorado Health Science Center)
Kim, Eui-Jin (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Jeong (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 176-179 More about this Journal
Abstract
An electron paramagnetic resonance (EPR) signal characteristic of the 5,5'-dimethyl-l-pyrroline-N-oxide (DMPO)-OH spin adduct, which is formed from the reaction of DMPO with superoxide radicals generated by xanthine oxidasemediated reaction, was significantly reduced by the cadaverine or Escherichia coli Mn-containing superoxide dismutase (MnSOD). Likewise, cytochrome c reduction by superoxide was inhibited by cadaverine, and the inhibition level increased in proportion to the level of cadaverine. The cadA mutant of Vibrio vulnificus, which does not produce cadaverine because of the lack of lysine decarboxylase, exhibits less tolerance to superoxide stress in comparison with wild type. The results indicate that cadaverine scavenges superoxide radicals, and protects cells from oxidative stress.
Keywords
Vibrio vulnificus; lysine decarboxylase; cadaverine; cadBA;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Chattopadhyay, M. K., C. W. Tabor, and H. Tabor. 2003. Polyamines protect Escherichia coli cells from the toxic effect of oxygen. Proc. Natl. Acad. Sci. USA 100: 2261-2265
2 Ha, H. C., N. S. Sirisoma, P. Kuppusamy, J. L. Zweier, P. M. Woster, and R. A. Casero Jr. 1998. The natural polyamine spermine functions directly as a free radical scavenger. Proc. Natl. Acad. Sci. USA 95: 11140-11145
3 Ju, H.-M., I.-G. Hwang, G.-J. Woo, T. S. Kim, and S. H. Choi. 2005. Identification of the Vibrio vulnificus fexA gene and evaluation of its influence on virulence. J. Microbiol. Biotechnol. 15: 1337-1345   과학기술학회마을
4 Kim, J.-S., M.-H. Sung, D.-H. Kho, and J. K. Lee. 2005. Induction of manganese-containing superoxide dismutase is required for acid tolerance in Vibrio vulnificus. J. Bacteriol. 187: 5984-5995   DOI   ScienceOn
5 Lin, J., M. P. Smith, K. C. Chapin, H. S. Baik, G. N. Bennett, and J. W. Foster. 1996. Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl. Environ. Microbiol. 62: 3094-3100
6 Masuoka, N. and I. Kubo. 2004. Characterization of xanthine oxidase inhibition by anacardic acids. Biochim. Biophys. Acta 1688: 245-249   DOI   ScienceOn
7 Minton, K. W., H. Tabor, and C. W. Tabor. 1990. Paraquat toxicity is increased in Escherichia coli defective in the synthesis of polyamines. Proc. Natl. Acad. Sci. USA 87: 2851-2855
8 Yoshida, M., K. Kashiwagi, A. Shigemasa, S. Taniguchi, K. Yamamoto, H. Makinoshima, A. Ishihama, and K. Igarashi. 2004. A unifying model for the role of polyamines in bacterial cell growth, the polyamine modulon. J. Biol. Chem. 279: 46008-46013   DOI   ScienceOn
9 Finkelstein, E., G. Rosen, and E. Rauckman. 1980. Spin trapping. Kinetics of the reaction of superoxide and hydroxyl radicals with nitrones. J. Am. Chem. Soc. 102: 4994-4999   DOI
10 Ha, H. C., D. J. P. Yager, P. A. Woster, and R. A. Casero Jr. 1998. Structural specificity of polyamines and polyamine analogues in the protection of DNA from strand breaks induced by reactive oxygen species. Biochem. Biophys. Res. Commun. 244: 298-303   DOI   ScienceOn
11 Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmid for DNA cloning in Gram-negative bacteria. Gene 70: 191-197   DOI   ScienceOn
12 Rhee, J. E., J. H. Rhee, P. Y. Ryu, and S. H. Choi. 2002. Identification of the cadBA operon from Vibrio vulnificus and its influence on survival to acid stress. FEMS Microbiol. Lett. 208: 245-251   DOI   ScienceOn
13 Roubaud, V., S. Sankarapandi, P. Kuppusamy, P. Tordo, and J. Zweier. 1998. Quantitative measurement of superoxide generation and oxygen consumption from leukocytes using electron paramagnetic resonance spectroscopy. Anal. Biochem. 257: 210-217   DOI   ScienceOn
14 Shin, N.-R., C.-H. Baek, D.-Y. Lee, Y.-W. Cho, D.-K. Park, K.-E. Lee, K.-S. Kim, and H. -S. Yoo. 2005. luxS and smcR quorum-sensing system of Vibrio vulnificus as an important factor for in vivo survival. J. Microbiol. Biotechnol. 15: 1197-1206   과학기술학회마을
15 Blake, P. A., R. E. Weaver, and D. G. Hollis. 1980. Diseases of humans (other than cholera) caused by vibrios. Annu. Rev. Microbiol. 34: 341-367   DOI   ScienceOn
16 Gaudu, P., D. Touati, V. Niviere, and M. Fontecave. 1994. The NAD(P)H:flavin oxidoreductase from Escherichia coli as a source of superoxide radicals. J. Biol. Chem. 269: 8182-8188
17 Neely, M. N. and E. R. Olson. 1996. Kinetics of expression of the Escherichia coli cad operon as a function of pH and lysine. J. Bacteriol. 178: 5522-5228   DOI
18 McCord, J. and I. Fridovich. 1969. Superoxide dismutase. An enzymic function for erythrocuprein(hemocuprein). J. Biol. Chem. 244: 6049-6055
19 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
20 Merrell, D. S. and A. Camilli. 1999. The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol. Microbiol. 34: 836-849   DOI   ScienceOn
21 Tabor, C. W. and H. Tabor. 1985. Polyamines in microorganisms. Microbiol. Rev. 49: 81-99
22 Massey, V. 1959. The microestimation of succinate and the extinction coefficient of cytochrome c. Biochim. Biophys. Acta 34: 255-256   DOI
23 Tkachenko, A., L. Nesterova, and M. Pshenichnov. 2001. The role of the natural polyamine putrescine in defense against oxidative stress in Escherichia coli. Arch. Microbiol. 176: 155-157   DOI   ScienceOn
24 Lee, H.-J., K.-J. Park, A. Y. Lee, S. G. Park, B. C. Park, K.-H. Lee, and S.-J. Park. 2003. Regulation of fur expression by RpoS and Fur in Vibrio vulnificus. J. Bacteriol. 185: 5891-5896   DOI   ScienceOn
25 Merrell, D. S. and A. Camilli. 2000. Regulation of Vibrio cholerae genes required for acid tolerance by a member of the 'ToxR-like' family of transcriptional regulators. J. Bacteriol. 182: 5342-5350   DOI   ScienceOn
26 Rhee, J. E., K. S. Kim, and S. H. Choi. 2005. CadC activates pH-dependent expression of the Vibrio vulnificus cadBA operon at a distance through direct binding to an upstream region. J. Bacteriol. 187: 7870-7875   DOI   ScienceOn
27 Shin, S., M. P. Castanie-Cornet, J. W. Foster, J. A. Crawford, C. Brinkley, and J. B. Kaper. 2001. An activator of glutamate decarboxylase genes regulates the expression of enteropathogenic Escherichia coli virulence genes through control of the plasmid-encoded regulator. Per. Mol. Microbiol. 41: 1133-1150
28 Fridovich, I. 1970. Quantitative aspect of the production of superoxide anion radical by milk xanthine oxidase. J. Biol. Chem. 245: 4053-4057
29 Rhee, J. E., H.-M. Ju, U. Park, B. C. Park, and S. H. Choi. 2004. Identification of the Vibrio vulnificus cadC and evaluation of its role in acid tolerance. J. Microbiol. Biotechnol. 14: 1093-1098