Browse > Article

Construction of Conjugative Gene Transfer System Between E. coli and Moderately Thermophilic, Extremely Acidophilic Acidithiobacillus caldus MTH-04  

Liu, Xianggmei (State Key Laboratory of Microbial Technology, Shandong University)
Lin, Jianqun (State Key Laboratory of Microbial Technology, Shandong University)
Zhang, Zheng (State Key Laboratory of Microbial Technology, Shandong University)
Bian, Jiang (State Key Laboratory of Microbial Technology, Shandong University)
Zhao, Qing (State Key Laboratory of Microbial Technology, Shandong University)
Liu, Ying (State Key Laboratory of Microbial Technology, Shandong University)
Lin, Jianqiang (State Key Laboratory of Microbial Technology, Shandong University)
Yan, Wangming (State Key Laboratory of Microbial Technology, Shandong University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.1, 2007 , pp. 162-167 More about this Journal
Abstract
A genetic transfer system for introducing foreign genes to biomining microorganisms is urgently needed. Thus, a conjugative gene transfer system was investigated for a moderately thermophilic, extremely acidophilic biomining bacterium, Acidithiobacillus caldus MTH-04. The broad-hostrange IncP plasmids RP4 and R68.45 were transferred directly into A. caldus MTH-04 from Escherichia coli by conjugation at relatively high frequencies. Additionally the broad-hostrange IncQ plasmids pJRD215, pVLT33, and pVLT35 were also transferred into A. caldus MTH-04 with the help of plasmid RP4 or strains with plasmid RP4 integrated into their chromosome, such as E. coli SM10. The $Km^r\;and\;Sm^r$ selectable markers from these plasmids were successfully expressed in A. caldus MTH-04. Futhermore, the IncP and IncQ plasmids were transferred back into E. coli cells from A. caldus MTH-04, thereby confirming the initial transfer of these plasmids from E. coli to A. caldus MTH-04. All the IncP and IncQ plasmids studied were stable in A. caldus MTH-04. Consequently, this development of a conjugational system for A. caldus MTH-04 will greatly facilitate its genetic study.
Keywords
Acidithiobacillus caldus; moderately thermophilic; conjugative transfer; IncP plasmid; IncQ plasmid;
Citations & Related Records

Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Birnboim, H. C. and J. Doly. 1979. A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523   DOI   ScienceOn
2 Dopson, M., E. B. Lindstrom, and K. B. Hallberg. 2002. ATP generation during reduced inorganic compound oxidation by Acidithiobacillus caldus is exclusively due to electron transport phosphorylation. Extremophiles 6: 123-129   DOI   ScienceOn
3 Haas, D. and B. W. Holloway. 1976. R factor variants with enhanced sex factor activity in Pseudomonas aeruginosa. Mol. Gen. Genet. 144: 243-251   DOI   ScienceOn
4 Jin, S. M., W. M. Yan, and Z. N. Wang. 1992. Transfer of IncP plasmids to extremely acidophilic Thiobacillus thiooxidans. Appl. Environ. Microbiol. 58: 429-430
5 Peng, J. B., W. M. Yan, and X. Z. Bao. 1994. Expression of heterogenous arsenic resistance genes in the obligately autotrophic biomining bacterium Thiobacillus ferrooxidans. Appl. Environ. Microbiol. 60: 2653-2656
6 Peng, J. B., W. M. Yan, and X. Z. Bao. 1994. Plasmid and transposon transfer to Thiobacillus ferrooxidans. J. Bacteriol. 176: 2892-2897   DOI
7 Rawlings, D. E. 1998. Industrial practice and the biology of leaching of metals from ores. J. Ind. Microbiol. Biotechnol. 20: 268-274   DOI   ScienceOn
8 Zyl, L. J., S. M. Deane, and D. E. Rawlings. 2003. Analysis of the mobilization region of the broad-host-range IncQ-like plasmid pTC-F14 and its ability to interact with a related plasmid, pTF-FC2. J. Bacteriol. 185: 6104-6111   DOI   ScienceOn
9 Davidson, M. S. and A. O. Summers. 1983. Wide-host-range plasmids function in the genus Thiobacillus. Appl. Environ. Microbiol. 46: 565-572
10 De Lorenzo, V. D., L. Eltis, B. Kessler, and K. N. Timmis. 1993. Analysis of Pseudomonas gene products using $lacl^{q}$/ Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123: 17-24   DOI   ScienceOn
11 Zhao, Q., X. M. Liu, Y. Zhan, J. Q. Lin, and W. M. Yan. 2005. Construction of an engineered Acidithioacillus caldus with high-efficiency arsenic resistance. Acta Microbiol. Sin. 45: 675-679
12 Datta, N., R. W. Hedges, E. J. Shaw, R. B. Sykes, and M. H. Richmond. 1971. Properties of an R factor from Pseudomonas aeruginosa. J. Bacteriol. 108: 1244-1249
13 Gardner, M. N., S. M. Deane, and D. E. Rawlings. 2001. Isolation of a new broad-host-range IncQ-like plasmid, pTC-F14, from the acidophilic bacterium Acidithiobacillus caldus and analysis of the plasmid replicon. J. Bacteriol. 183: 3303-3309   DOI   ScienceOn
14 Kulpa, C. F., M. T. Roskey, and M. T. Travis. 1983. Transfer of plasmid RP1 into chemolithothophic Thiobacillus neapolitanus. J. Bacteriol. 156: 434-436
15 Lundgren, D. G. and M. Silver. 1980. Ore leaching by bacteria. Annu. Rev. Microbiol. 34: 263-283   DOI   ScienceOn
16 Dopson, M. and E. B. Lindstrom. 1999. Potential role of Thiobacillus caldus in arsenopyrite bioleaching. Appl. Environ. Microbiol. 65: 36-40
17 Dopson, M., E. B. Lindstrom, and K. B. Hallberg. 2001. Chromosomally encoded arsenical resistance of the moderately thermophilic acidophile Acidithiobacillus caldus. Extremophiles 5: 247-255   DOI   ScienceOn
18 Willetts, N. and B. Wilkins. 1984. Processing of plasmid DNA during bacterial conjugation. Microbiol. Rev. 48: 24-41
19 Sand, W., K. Rohde, B. Sobotke, and C. Zenneck. 1992. Evaluation of Leptospirillum ferrooxidans for leaching. Appl. Environ. Microbiol. 58: 85-92
20 Brierley, C. L. 1982. Microbiological mining. Sci. Am. 247: 42-51
21 Hallberg, K. B. and E. B. Lindstrom. 1996. Multiple serotypes of the moderate thermophile Thiobacillus caldus, a limitation of immunological assays for biomining microorganisms. Appl. Environ. Microbiol. 62: 4243-4246
22 Rawlings, D. E., H. Tributsch, and G. S. Hansford. 1999. Reasons why 'Leptospirillum'-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145: 5-13   DOI   ScienceOn
23 Rawlings, D. E. 2002. Heavy metal mining using microbes. Annu. Rev. Microbiol. 56: 65-91   DOI   ScienceOn
24 Davison, J., M. Heusterspreute, N. Chevalier, V. Ha-Thi, and F. Brunel. 1987. Vectors with restriction site banks V. pJRD215, a wide-host-range cosmid vector with multiple cloning sites. Gene 51: 275-280   DOI
25 Edwards, K. J., P. L. Bond, and J. F. Banfield. 2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: A chemotactic response to sulphur minerals? Environ. Microbiol. 2: 324-332   DOI   ScienceOn
26 Hallberg, K. B., M. Dopson, and E. B. Lindstrom. 1996. Arsenic toxicity is not due to a direct effect on the oxidation of reduced inorganic sulfur compounds by Thiobacillus caldus. FEMS Microbiol. Lett. 145: 409-414   DOI   ScienceOn
27 Kamimura, K., T. Okayama, K. Murakami, and T. Sugio. 1999. Isolation and characterization of a moderately thermophilic sulfur-oxidizing bacterium. Microbios 99: 7-18
28 Yankofsky, S. A., R. Gurevich, N. Grimland, and A. A. Stark. 1983. Genetic transformation of obligately chemolithotrophic thiobacilli. J. Bacteriol. 153: 652-657
29 Hallberg, K. B. and E. B. Lindstrom. 1994. Characterization of Thiobacillus caldus sp. nov., a moderately thermophilic acidophile. Microbiology 140: 3451-3456   DOI   ScienceOn
30 Maniatis, T., E. F. Fritsch, and J. Sambrook. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
31 Mobley, H. L. T., C. M. Chen, S. Silver, and B. P. Rosen. 1983. Cloning and expression of R-factor mediated arsenate resistance in Escherichia coli. Mol. Gen. Genet. 191: 421- 426   DOI   ScienceOn
32 Colmer, A. R. and M. E. Hinkel. 1947. The role of microorganisms in acid mine drainage: A preliminary report. Science 106: 253-256   DOI
33 Okibe, N., M. Gericke, K. B. Hallberg, and D. B. Johnson. 2003. Enumeration and characterization of acidophilic microorganisms isolated from a pilot plant stirred-tank bioleaching operation. Appl. Environ. Microbiol. 69: 1936- 1943   DOI   ScienceOn
34 Simon, R., U. Priefer, and A. Puhier. 1983. A broad host range mobilization system for in vitro genetic engineering: Transposon mutagenesis in Gram negative bacteria. Bio/Technology 1: 784-791   DOI
35 Liu, Y., F. J. Qi, J. Q. Lin, K. L. Tian, and W. M. Yan. 2004. Isolation and phylogenetic analysis of a moderately thermophilic acidophilic sulfur oxidizing bacterium. Acta Microbiol. Sin. 44: 382-385