Browse > Article

Genetic Analysis of Spontaneous Lactose-Utilizing Mutants from Vibrio vulnificus  

Baek, Chang-Ho (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee, Ko-Eun (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Park, Dae-Kyun (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Choi, Sang-Ho (Department of Agricultural Biotechnology, Seoul National University)
Kim, Kun-Soo (Department of Life Science and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.12, 2007 , pp. 2046-2055 More about this Journal
Abstract
Wild-type V. vulnificus cannot grow using lactose as the sole carbon source or take up the sugar. However, prolonged culture of this species in media containing lactose as the sole carbon source leads to the generation of a spontaneous lactose-utilizing (LU) mutant. This mutant showed strong ${\beta}$-galactosidase activity, whereas the wild-type strain showed a barely detectable level of the activity. A mutant with a lesion in a gene homologous to the lacZ of E. coli in the bacterium no longer showed ${\beta}$-galactosidase activity or generated spontaneous LU mutants, suggesting that the lacZ homolog is responsible for the catabolism of lactose, but the expression of the gene and genes for transport of lactose is tightly regulated. Genetic analysis of spontaneous LU mutants showed that all the mutations occur in a lacI homolog, which is located downstream to the lacZ and putative ABC-type lac permease genes. Consistent with this, a genomic library clone containing the lad gene, when present in trans, made the spontaneous LU mutants no longer able to utilize lactose as the sole carbon source. Taken together with the observation that excessive amounts of exogenously supplemented possible catabolic products of lactose have negative effects on the growth and survivability of V. vulnificus, we suggest that V. vulnificus has evolved to carry a repressor that tightly regulates the expression of lacZ to keep the intracellular toxic catabolic intermediates at a sublethal level.
Keywords
Vibrio vulnificus; ${\beta}$-galactosidase; lactose; lacZ/lacI;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Chuprina, V. P., J. A. C. Rullmann, R. M. J. N. Lamerich, J. H. van Boom, R. Boelens, and R. Kaptein. 1993. Structure of the complex of lac repressor headpiece and an 11 basepair half-operator determined by nuclear magnetic resonance spectroscopy and restrained molecular dynamics. J. Mol. Biol. 234: 446-462   DOI   ScienceOn
2 Davidson, L. S. and J. D. Oliver. 1986. Plasmid carriage in Vibrio vulnificus and other lactose-fermenting marine vibrios. Appl. Environ. Microbiol. 52: 211-213
3 Finkelstein, R. A. and C. E. Lankford. 1957. A bacteriotoxic substance in autoclaved culture media containing glucose and phosphate. Appl. Microbiol. 5: 74-79
4 Friedman, A. M., T. O. Fischman, and T. A. Steitz. 1995. Crystal structure of lac repressor core tetramer and implications for DNA looping. Science 268: 1721-1727   DOI
5 Ruben, G. C. and T. B. Roos. 1997. Conformation of Lac repressor tetramer in solution, bound and unbound to operator DNA. Microsc. Res. Tech. 36: 400-416   DOI   ScienceOn
6 Skorupski, K. and R. K. Taylor. 1996. Positive selection vectors for allelic exchange. Gene 169: 47-52   DOI   ScienceOn
7 Weickert, M. J. and S. Adhya. 1992. A family of bacterial regulators homologous to Gal and Lac repressors. J. Biol. Chem. 267: 15869-15874
8 Baumann, P., L. Baumann, and B. G. Hall. 1981. Lactose utilization by V. vulnificus. Curr. Microbiol. 6: 131-135   DOI
9 Miller, J. H. 1972. Formulas and recipes. p. 431. In: Experiments in Molecular Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y
10 Oliver, J. D., R. A. Warner, and D. R. Cleland. 1982. Distribution and ecology of Vibrio vulnificus and other lactose-fermenting marine vibrios in coastal waters of the southeastern United States. Appl. Environ. Microbiol. 44: 1404-1414
11 Wright, A. C., L. M. Simpson, J. D. Oliver, and J. G. Morris Jr. 1990. Phenotypic evaluation of acapsular transposon mutants of Vibrio vulnificus. Infect. Immun. 58: 1769-1773
12 Blake, P. A., R. E. Weaver, and D. G. Hollis. 1980. Diseases of humans (other than cholerae) caused by vibrios. Annu. Rev. Microbiol. 34: 341-367   DOI   ScienceOn
13 Chaplin, M. F. 1994. Monosaccharides, pp. 2-3. In M. F. Chaplin and J. F. Kennedy (eds.), Carbohydrate Analysis: A Practical Approach. Oxford University Press Inc., New York
14 Ellis, J. G., M. M. Ryder, and M. E. Tate. 1984. Agrobacterium tumefaciens TR-DNA codes a pathway for agropine biosynthesis. Mol. Gen. Genet. 195: 466-473   DOI
15 Kim, S.-J., C.-M. Lee, M.-Y. Kim, Y.-S. Yeo, S.-H. Yoon, H.-C. Kang, and B.-S. Koo. 2007. Screening and characterization of enzyme with ${\beta}$-glucosidase activity from environmental DNA. J. Microbiol. Biotechnol. 17: 905-912   과학기술학회마을
16 Kovach, M. E., P. H. Elzer, D. S. Hill, G. T. Robertson, M. A. Faris, R. M. Roop II, and K. M. Peterson. 1995. Four new derivatives of the broad-host range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 66: 175-176
17 Pierre, P. and H. M. Krisch. 1984. In vitro insertional mutagenesis with a selectable DNA fragment. Gene 1045: 303-313
18 Sistrom, W. R. 1962. The kinetics of the synthesis of photopigment in Rhodopseudomonas sphaeroides. J. Gen. Microbiol. 28: 607-616   DOI   ScienceOn
19 de Crombrugghe, B., S. Busby, and H. Buc. 1984. Cyclic AMP receptor protein: Role in transcription activation. Science 224: 831-838   DOI
20 Hars, U., R. Horlacher, W. Boos, W. Welte, and K. Diederichs. 1998. Crystal structure of the effector-binding domain of the trehalose-repressor of Escherichia coli, a member of the LacI family, in its complexes with inducer trehalose-6-phosphate and noninducer trehalose. Protein Sci. 7: 2511-2521   DOI   ScienceOn
21 Lee, J.-H., J.-E. Rhee, U. Y. Park, H.-M. Ju, B.-C. Lee, T.-S. Kim, H.-S. Jeong, and S.-H. Choi. 2007. Identification and functional analysis of Vibrio vulnificus SmcR, a novel global regulator. J. Microbiol. Biotechnol. 17: 325-334   과학기술학회마을
22 Klontz, K. C., S. Lieb, M. Schreiber, H. T. Janowski, L. M. Baldy, and R. A. Gunn. 1988. Syndromes of Vibrio vulnificus infections. Clinical and epidemiologic features in Florida cases, 1981-1987. Ann. Intern. Med. 109: 318-323
23 Swint-Kruse, L., C. Larson, B. M. Pettitt, and K. S. Matthews. 2002. Fine-turning function: Correlation of hinge domain interactions with functional distinctions between LacI and PurR. Protein Sci. 11: 778-794   DOI   ScienceOn
24 Lee, K.-E., D.-K. Park, C.-H. Baek, W. Hwang, and K.-S. Kim. 2006. repABC-type replicator region of megaplasmid pAtC58 in Agrobacterium tumefaciens C58. J. Microbiol. Biotechnol. 16: 118-125   과학기술학회마을
25 Beckwith, J. R. 1967. Regulation of Lac operon. Science 156: 597-604   DOI
26 de Lorenzo, V. and K. N. Timmis. 1994. Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol. 235: 386-405   DOI
27 Tacket, C. O., T. J. Barrett, J. M. Mann, M. A. Roberts, and P. A. Blake. 1984. Wound infections caused by Vibrio vulnificus, a marine vibrio, in inland areas of the United States. J. Clin. Microbiol. 19: 197-199
28 Wright, A. C., R. T. Hill, J. A. Johnson, M. C. Roghman, R. R. Colwell, and J. G. Morris Jr. 1996. Distribution of Vibrio vulnificus in the Chesapeake Bay. Appl. Environ. Microbiol. 62: 717-724
29 Hall, B. G. 1978. Regulation of newly evolved enzymes. IV. Directed evolution of the ebg repressor. Genetics 90: 673- 691
30 Jacob, J. and J. Monod. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3: 318-356   DOI
31 Kaniga, K., I. Dellor, and G. R. Cornelis. 1991. A wide-hostrange suicide vector for improving reverse genetics in Gramnegative bacteria: Inactivation of the blaA gene of Yersinia enterocolitica. Gene 20: 137-141
32 Hollis, D. G., R. E. Weaver, C. N. Baker, and C. Thornsberry. 1976. Halophilic Vibrio species isolated from blood cultures. J. Clin. Microbiol. 3: 425-431
33 Lee, K.-E., J.-S. Bang, C.-H. Baek, D.-K. Park, W. Hwang, and K.-S. Kim. 2007. IVET-based identification of virulence factors in Vibrio vulnificus MO6-24/O. J. Microbiol. Biotechnol. 17: 234-243   과학기술학회마을
34 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual. 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. U.S.A
35 Baumann, P., L. Baumann, and M. Mandel. 1971. Taxonomy of marine bacteria: The genus Beneckea. J. Bacteriol. 107: 268-294
36 Schumacher, M. A., K. Y. Choi, H. Zalkin, and R. G. Brennan. 1994. Crystal structure of LacI member, PurR, bound to DNA: Minor groove binding by ${\alpha}$ helices. Science 266: 763-770   DOI
37 Byrd, J. J., A. M. Cheville, J. L. Bose, and C. W. Kaspar. 1999. Lethality of a heat- and phosphate-catalyzed glucose by-product to Escherichia coli O157:H7 and partial protection conferred by the rpoS regulon. Appl. Environ. Microbiol. 65: 2396-2401