Browse > Article

Effects of Application of Rhodopseudomonas sp. on Seed Germination and Growth of Tomato Under Axenic Conditions  

Koh, Rae-Hyun (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
Song, Hong-Gyu (Division of Life Sciences, and Research Institute of Life Sciences, Kangwon National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1805-1810 More about this Journal
Abstract
Purple nonsulfur bacteria were isolated from river sediments and their growth promoting capabilities on tomato were examined. Isolated strains KL9 and BL6 were identified as Rhodopseudomonas spp. by 16S rDNA sequence analysis. Rhodopseudomonas strain KL9 maximally produced 5.56 mM/min/mg protein and $67.2\;{\mu}M/min/mg$ protein of indole-3-acetic acid (IAA) and 5-aminolevulinic acid (ALA), respectively, which may be one of the mechanisms of plant growth enhancement. The germination percentage of tomato seed, total length, and dry mass of germinated tomato seedling increased by 30.2%, 71.1%, and 270.8%, respectively, compared with those of the uninoculated control 7 days after inoculation of strain KL9. The lengths of the root and shoot of germinated seedling treated with 3 mM tryptophan, a precursor of IAA, increased by 104.4% and 156.5%, respectively, 7 days after inoculation of strain KL9. Rhodopseudomonas KL9 increased 123.5% and 54% of the root and shoot lengths of germinated seedling, respectively, treated with 15 mM glycine and succinate, precursors of ALA. This plant growth promoting capability of purple nonsulfur bacteria may be a candidate for a biofertilizer in agriculture.
Keywords
Purple nonsulfur bacteria; tomato; plant growth promotion; seed germination; phytohormone;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Archana, A., Ch. Sasikala, Ch. V. Ramana, and K. Arunasri. 2004. 'Paraffin wax-overlay of pour plate', a method for the isolation and enumeration of purple non-sulfur bacteria. J. Microbiol. Meth. 59: 423-425   DOI   ScienceOn
2 Chon, S. U. 2003. Herbicidal activity of $\delta$-aminolevulinic acid on several plants as affected by application methods. Korean J. Crop Sci. 48: 50-58
3 Hotta, Y., T. Tanaka, H. Takaoka, Y. Takeuchi, and M. Konnai. 1997. Promotive effects of 5-aminolevulinic acid on the yield of several crops. Plant Growth Regul. 22: 109-114   DOI   ScienceOn
4 Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules, pp. 121-132. In H. N. Munro (ed.), Mammalian Protein Metabolism. Academic Press. New York
5 Kende, H. and J. A. D. Zeevaart. 1997. The five 'classical' hormones. Plant Cell 9: 1197-1210   DOI   ScienceOn
6 Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801   DOI
7 Rajasekhar, N., Ch. Sasikala, and Ch. V. Ramana. 1999. Photoproduction of indole 3-acetic acid by Rhodobacter sphaeroides from indole and glycine. Biotechnol. Lett. 21: 543-545   DOI   ScienceOn
8 Whitelaw, M. A., T. J. Harden, and K. R. Helyar. 1999. Phosphate solubilisation in solution culture by the soil fungus Penicillium radicum. Soil Biol. Biochem. 31: 655-665   DOI   ScienceOn
9 Gupta, S., D. Arora, and A. Srivastava. 1995. Growth promotion of tomato plants by rhizobacteria and imposition of energy stress on Rhizoctonia solani. Soil Biol. Biochem. 27: 1051-1058   DOI   ScienceOn
10 Watanabe, K., T. Tanaka, Y. Hotta, H. Kuramochi, and Y. Takeuchi. 2000. Improving salt tolerance of cotton seedlings with 5-aminolevulinic acid. Plant Growth Regul. 32: 99-103
11 Siddiqui, Z., A. Iqbal, and I. Mahmood. 2001. Effects of Pseudomonas fluorescens and fertilizers on the reproduction of Meloidogyne incognita and growth of tomato. Appl. Soil Ecol. 16: 179-185   DOI   ScienceOn
12 Dey, R., K. K. Pal, D. M. Bhatt, and S. M. Chauhan. 2004. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol. Res. 159: 371-394   DOI   ScienceOn
13 de Brito Alvarez, M., S. Gagne, and H. Antoun. 1995. Effect of compost on rhizosphere microflora of the tomato and on the incidence of plant growth-promoting rhizobacteria. Appl. Environ. Microbiol. 61: 194-199
14 Ryu, C.-M., J. Kim, O. Choi, S.-Y. Park, S.-H. Park, and C.-S. Park. 2005. Nature of a root-associated Paenibacillus polymyxa from field-grown winter barley in Korea. J. Microbiol. Biotechnol. 15: 984-991   과학기술학회마을
15 Mauzerall, D. and S. Granick. 1955. The occurrence and determination of $\delta$-aminolevulinic acid and porphobilinogen in urine. J. Biol. Chem. 219: 435-446
16 Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192   과학기술학회마을
17 Elbadry, M., H. G. Eldin, and Kh. Elbanna. 1999. Effects of Rhodobacter capsulatus inoculation in combination with graded levels of nitrogen fertilizer on growth and yield of rice in pots and lysimeter experiments. World J. Microbiol. Biotechnol. 15: 393-395   DOI
18 Gerhardson, B. and S. Wright. 2002. Bacterial associations with plants: Beneficial, non N-fixing interactions, pp. 79-103. In K. Sivasithamparam, K. W. Dixon, and R. L. Narrett (eds.), Microorganisms in Plant Conservation and Biodiversity. Kluwer Academic Press, London
19 Clesceri, L. S., A. E. Greenberg, and A. D. Eaton. 1995. Standard Methods for the Examination of Water and Wastewater, 19th Ed. APHA-AWWA-WEF. Washington, D.C. Section 4: 111
20 Rodríguez, H. and R. Fraga. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotech. Adv. 17: 319-339   DOI   ScienceOn
21 Ryu, J., M. Madhaiyan, S. Poonguzhali, W. Yim, P. Indiragandhi, K. Kim, R. Anandham, J. Yun, K. H. Kim, and T. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628   과학기술학회마을
22 Glickmann, E. and Y. Dessaux. 1995. A critical examination of the specificity of the Salkowski reagent for indolic compounds produced by phytopathogenic bacteria. Appl. Environ. Microbiol. 61: 793-796
23 Lifshitz, R., J. W. Kloepper, M. Kozlowski, C. Simonson, J. Carlson, E. M. Tipping, and I. Zaleska. 1987. Growth promotion of canola (rapeseed) seedlings by a strain of Pseudomonas putida under gnotobiotic conditions. Can. J. Microbiol. 33: 390-395   DOI
24 Bashan, Y. and L. de-Bashan. 2005. Fresh-weight measurements of roots provide inaccurate estimates of the effects of plant growth-promoting bacteria on root growth: A critical examination. Soil Biol. Biochem. 37: 1795-1804   DOI   ScienceOn
25 Madhaiyan, M., S. Poonguzhali, J. Ryu, and T. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocylopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224: 268-278   DOI   ScienceOn
26 Glick, B. R., D. M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J. Theor. Biol. 190: 63-68   DOI   ScienceOn
27 Poonguzhali, S., M. Madhaiyan, M. Thangaraju, J. Ryu, K. Chung, and T. Sa. 2005. Effects of co-cultures, containing N-fixer and P-solubilizer, on the growth and yield of pearl millet (Pennisetum glaucum (L.) R. Br.) and blackgram (Vigna mungo L.). J. Microbiol. Biotechnol. 15: 903-908   과학기술학회마을
28 Kennedy, I. R., L. L. Pereg-Gerk, C. Wood, R. Deaker, K. Gilchrist, and S. Katupitiya. 1997. Biological nitrogen fixation in non-leguminous field crops: Facilitating the evolution of an effective association between Azospirillum and wheat. Plant Soil 194: 65-79   DOI   ScienceOn
29 Maudinas, B., M. Chemardin, E. Yovanovitch, and P. Gadal. 1981. Gnotobiotic cultures of rice plants up to ear stage in the absence of combined nitrogen source but in the presence of free living nitrogen fixing bacteria Azotobacter vinelandii and Rhodopseudomonas capsulata. Plant Soil 60: 85-97   DOI