Browse > Article

Synbiotic Synthesis of Oligosaccharides During Milk Fermentation by Addition of Leuconostoc Starter and Sugars  

Seo, Dong-Mi (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Kim, So-Young (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Eom, Hyun-Ju (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Han, Nam-Soo (Department of Food Science and Technology, Research Center for Bioresource and Health, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1758-1764 More about this Journal
Abstract
Synthesis of oligosaccharides during milk fermentation was attempted by inoculating Leuconostoc citreum with Lactobacillus casei, Lb. delbrueckii subsp. bulgaricus, and Streptococcus thermophilus as starters. Dextransucrase of Ln. citreum worked as a catalyst for the transglycosylation reaction of sugars; sucrose was added as the glucose donor, and lactose or maltose acted as the acceptor compound for the reaction. When 4% sucrose was added in milk, glucosyl-lactose was synthesized (about 1%, w/v) after 1-2 days of fermentation at 15 or $25^{\circ}C$. Alternatively, when sucrose and maltose (2% each, w/v) were added, panose (about 1 %, w/v) and other isomaltooligosaccharides were made in a day at $15-35^{\circ}C$. Growth patterns of lactobacilli and streptococci starters were not affected by the coculture of leuconostoc starter, but the rate of acid synthesis was slightly slowed at every temperature. Addition of sugars in milk did not give any adverse effect on the lactate fermentation. Accordingly, the use of leuconostoc starter and addition of sugars in milk allowed the production of oligosaccharides-containing fermented milk, and application of this method will facilitate the extensive development of synbiotic lactate foods.
Keywords
Dextransucrase; fermented milk; glucosyl-lactose; isomaltooligosaccharides; Leuconostoc citreum; panose; synbiotics; yogurt;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 8  (Related Records In Web of Science)
연도 인용수 순위
1 Eom, H. J. 2002. Isolation of psychrotrophic Leuconostoc mesenteroides producing highly active dextransucrase and application to lactate-fermented foods. MS Thesis, Chungbuk National University, Cheongju, Korea
2 Font de Valdez, G., G. S. de Giori, M. Garro, F. Mozzi, and G. Oliver. 1990. Lactic acid bacteria from naturally fermented vegetables. Microbiol. Alim. Nutr. 8: 175-179
3 Gibson, G. R. and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 125: 1401-1412
4 Holzapfel, W. H., P. Haberer, R. Geisen, J. Bjorkroth, and U. Schillinger. 2001. Taxonomy and important features of probiotic microorganisms in food and nutrition. Am. J. Clin. Nutr. 73: 365-373   DOI
5 Roberfroid, M. B., J. A. E. Van Loo, and G. R. Gibson. 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128: 11-19
6 Robyt, J. F. 1995. Mechanisms in the glucansucrase synthesis of polysaccharides and oligosaccharides from sucrose. Adv. Carbohydr. Chem. Biochem. 51: 133-168   DOI
7 Robyt, J. F. and R. Mukerjea. 1994. Separation and quantitative determination of nanogram quantities of maltodextrins and isomaltodextrins by thin-layer chromatography. Carbohydr. Res. 251: 187-202   DOI   ScienceOn
8 Martin-Sosa, S., M. J. Martin, L. A. Garcia-Pardo, and P. Hueso. 2003. Sialyloligosaccharides in human and bovine milk and in infant formulas: Variations with the progression of lactation. J. Dairy Sci. 86: 52-59   DOI   ScienceOn
9 Chung, C.-H. 2006. Production of glucooligosaccharides and mannitol from Leuconostoc mesenteroides B-742 fermentation and its separation from byproducts. J. Microbiol. Biotechnol. 16: 325-329   과학기술학회마을
10 Meydani, S. N. and W. K. Ha. 2000. Immunologic effects of yogurt. Am. J. Clin. Nutr. 71: 861-872   DOI
11 Playne, M. J. and R. Crittenden. 1996. Commercially available oligosaccharides. Bull. Int. Dairy Fed. 313: 10-22
12 Chambel, L., I. M. Chelo, L. Ze-Ze, L. G. Pedro, M. A. Santos, and R. Tenreiro. 2006. Leuconostoc pseudoficulneum sp. nov., isolated from a ripe fig. Int. J. Syst. Evol. Microbiol. 56: 1375-1381   DOI   ScienceOn
13 Kunz, C. and S. Rudloff. 2006. Health promoting aspects of milk oligosaccharides. Int. Dairy J. 16: 1341-1346   DOI   ScienceOn
14 Delzenne, N. M. 2003. Oligosaccharides: State of the art. Proc. Nutr. Soc. 62: 177-182
15 Parvez, S., K. A. Malik, S. Ah Kang, and H. Y. Kim. 2006. Probiotics and their fermented food products are beneficial for health. J. Appl. Microbiol. 100: 1171-1185   DOI   ScienceOn
16 Kim, H. Y., J. O. Yang, and G. E. Ji. 2005. Effect of bifidobacteria on production of allergy-related cytokines from mouse spleen cells. J. Microbiol. Biotechnol. 15: 265- 268   과학기술학회마을
17 Sul, S. Y., H. J. Kim, T. W. Kim, and H. Y. Kim. 2007. Rapid identification of Lactobacillus and Bifidobacterium in probiotic products using multiplex PCR. J. Microbiol. Biotechnol. 17: 490-495   과학기술학회마을
18 Tomomatsu, H. 1994. Health effects of oligosaccharides. Food Technol. 10: 61-64
19 AOAC. 1980. Official Methods of Analysis, 13th Ed. AOAC, Washington D.C
20 Kitaoka, M. and J. F. Robyt. 1998. Large-scale preparation of highly purified dextransucrase from a high-producing constitutive mutant of Leuconostoc mesenteroides B-512FMC. Enzyme Microb. Technol. 23: 386-391   DOI   ScienceOn
21 Roberfroid, M. B. 1998. Prebiotics and synbiotics: Concepts and nutritional properties. Br. J. Nutr. 80: 197-202
22 Gmeiner, M., W. Kneifel, K. D. Kulbe, R. Wouters, P. De Boever, L. Nollet, and W. Verstraete. 2000. Influence of a synbiotic mixture consisting of Lactobacillus acidophilus 74-2 and a fructooligosaccharide preparation on the microbial ecology sustained in a simulation of the human intestinal microbial ecosystem (SHIME reactor). Appl. Microbiol. Biotechnol. 53: 219-223   DOI   ScienceOn
23 Han, N. S., Y. S. Jung, H. J. Eom, Y. H. Koh, J. F. Robyt, and J. H. Seo. 2002. Simultaneous biocatalytic synthesis of panose during lactate fermentation in kimchi. J. Microbiol. Biotechnol. 12: 46-52
24 Robyt, J. F. and S. H. Eklund. 1983. Relative, quantitative effects of acceptors in the reaction of Leuconostoc mesenteroides B-512F dextransucrase. Carbohydr. Res. 121: 279-286   DOI   ScienceOn
25 Mahoney, R. R. 1998. Galactosyl-oligosaccharide formation during lactose hydrolysis: A review. Food Chem. 63: 147-154   DOI   ScienceOn
26 Rowland, I. R., C. J. Rumney, J. T. Coutts, and L. C. Lievense. 1998. Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19: 281-285   DOI   ScienceOn
27 Schaafsma, G., W. J. A. Meuling, W. Van Dokkum, and C. Bouley. 1998. Effects of a milk product, fermented by Lactobacillus acidophilus and with fructo-oligosaccharides added, on blood lipids in male volunteers. Eur. J. Clin. Nutr. 52: 436-440   DOI
28 Adolfsson, O., S. N. Meydani, and R. M. Russell. 2004. Yogurt and gut function. Am. J. Clin. Nutr. 80: 245-256   DOI
29 Lamoureux, L., D. Roy, and S. F. Gauthier. 2002. Production of oligosaccharides in yogurt containing bifidobacteria and yogurt cultures. J. Dairy Sci. 85: 1058-1069   DOI   ScienceOn
30 Lee, J. S., G. Y. Heo, J. W. Lee, Y. J. Oh, J. A. Park, Y. H. Park, Y. R. Pyun, and J. S. Ahn. 2005. Analysis of kimchi microflora using denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 102: 143-150   DOI   ScienceOn
31 Witthuhn, R. C., T. Schoeman, and T. J. Britz. 2005. Characterisation of the microbial population at different stages of kefir production and kefir grain mass cultivation. Int. Dairy J. 15: 383-389   DOI   ScienceOn
32 Miyao, S. and T. Ogawa. 1988. Selective media for enumerating lactic acid bacteria groups from fermented pickles. Jpn. J. Food Eng. 35: 610-617