Browse > Article

Influence of Plant Species and Environmental Conditions on Epiphytic and Endophytic Pink-Pigmented Facultative Methylotrophic Bacterial Populations Associated with Field-grown Rice Cultivars  

Madhaiyan, Munusamy (Department of Agricultural Chemistry, Chungbuk National University)
Poonguzhali, Selvaraj (Department of Agricultural Chemistry, Chungbuk National University)
Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.10, 2007 , pp. 1645-1654 More about this Journal
Abstract
The total methylotrophic population associated with rice plants from different cultivars was enumerated at three different stages: vegetative, flowering, and harvesting. The bacterial population in the leaf, rhizosphere soil, endophytic in the stem and roots, and epiphytic in the florets and grains were determined from four rice cultivars, Il-mi, Nam-pyeoung, O-dae, and Dong-jin, sampled from three different field sites. The methylotrophic bacteria isolated on AMS media containing 0.5% methanol as the sole carbon source uniformly showed three distinct morphologies, which were recorded as separate groups and their distribution among the various samples was determined using the ecophysiological index. The growth stage at the time of sampling had a more significant effect on the methylotrophic population and their distribution than the field site or cultivar. A similar effect was also observed for the PPFMs, where their population in different plant parts increased from V10 to R4 and then decreased towards stage R9. A canonical discriminant analysis of the PPFM population from different parts of rice showed clear variations among the cultivars, sampled sites, and growth stages, although the variations were more prominent among the growth stages.
Keywords
Heterotrophs; methylotrophs; Methylobacterium; ecophysiological index; canonical discriminant analysis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
1 Corpe, W. A. and S. Rheem. 1989. Ecology of the methylotrophic bacteria on living leaf surfaces. FEMS Microbiol. Ecol. 62: 243-248   DOI
2 Elbeltagy, A., K. Nishioka, H. Suzuki, T. Sato, Y. I. Sato, H. Morisaki, H. Mitsui, and K. Minamisawa. 2000. Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci. Plant Nutr. 46: 617-629   DOI   ScienceOn
3 Glick, B. R., C. B. Jacobson, M. M. K. Schwarze, and J. J. Pasternak. 1994. 1-Aminocyclopropane-1-carboxylate deaminase mutants of plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can. J. Microbiol. 40: 911-915   DOI   ScienceOn
4 Idris, R., M. Kuffner, L. Bodrossy, M. Puschenreiter, S. Monchy, W. W. Wenzel, and A. Sessitsch. 2006. Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Syst. Appl. Microbiol. 29: 634-644   DOI   ScienceOn
5 Idris, R., R. Trifonova, M. Puschenreiter, W. W. Wenzel, and A. Sessitsch. 2004. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl. Environ. Microbiol. 70: 2667-2677   DOI
6 Kinkel, L. L., M. Wilson, and S. E. Lindow. 2000. Plant species and plant incubation conditions influence variability in epiphytic bacterial population size. Microb. Ecol. 39: 1-11   DOI   ScienceOn
7 Koenig, R. L., R. O. Morris, and J. C. Polacco. 2002. tRNA is the source of low-level trans-zeatin production in Methylobacterium spp. J. Bacteriol. 184: 1832-1842   DOI
8 Lee, H. Y., K. H. Park, J. H. Shim, R. D. Park, Y. W. Kim, J. Y. Cho, H. B. Hoon, Y. C. Kim, G. S. Cha, H. B. Krishnan, and K. Y. Kim. 2005. Quantitative changes of plant defense enzymes in biocontrol of pepper (Capsicium annuum L.) late blight by antagonistic Bacillus subtilis HJ927. J. Microbiol. Biotechnol. 15: 1073-1079   과학기술학회마을
9 Lidstrom, M. E. and L. Chistoserdova. 2002. Plants in the pink: Cytokinin production by Methylobacterium. J. Bacteriol. 184: 1818   DOI   ScienceOn
10 Scheid, D. and S. Stubner. 2001. Structure and diversity of Gram-negative sulfate-reducing bacteria on rice roots. FEMS Microbiol. Ecol. 36: 175-183   DOI
11 Sy, A., A. C. J. Timmers, C. Knief, and J. A. Vorholt. 2005. Methylotrophic metabolism is advantageous for Methylobacterium extorquens during colonization of Medicago truncatula under competitive conditions. Appl. Environ. Microbiol. 71: 7245-7252   DOI   ScienceOn
12 Holland, M. A. and J. C. Polacco. 1992. Urease-null and hydrogenase-null phenotypes of a phylloplane bacterium reveal altered nickel metabolism in two soybean mutants. Plant Physiol. 98: 942-948   DOI   ScienceOn
13 Counce, P. A., T. C. Keisling, and A. J. Mitchell. 2000. A uniform, objective, and adaptive system for expressing rice development. Crop Sci. 40: 436-443   DOI   ScienceOn
14 Ruiz Palomino, M., J. A. Lucas Garcýa, B. Ramos, F. J. Gutierrez Manero, and A. Probanza. 2005. Seasonal diversity changes in alder (Alnus glutinosa) culturable rhizobacterial communities throughout a phenological cycle. Appl. Soil Ecol. 29: 215-224   DOI   ScienceOn
15 Hirano, S. S. and C. D. Upper. 1991. Bacterial community dynamics, pp. 271-294. In J. H. Andrews and S. S. Hirano (eds.), Microbial Ecology of Leaves. Springer-Verlag, New York, NY
16 Omer, Z. S., R. Tombolini, and B. Gerhardson. 2004. Plant colonization by pink-pigmented facultative methylotrophic bacteria (PPFMs). FEMS Microbiol. Ecol. 47: 319-326   DOI   ScienceOn
17 Romanovskaya, V. A., S. M. Stolyar, Y. R. Malashenko, and T. N. Dodatko. 2001. The ways of plant colonization by Methylobacterium strains and properties of these bacteria. Microbiology 70: 221-227   DOI
18 Kuklinsky-Sobral, J., W. L. Araujo, R. Mendes, I. O. Geraldi, A. A. Pizzirani-Kleiner, and J. L. Azevedo. 2004. Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ. Microbiol. 6: 1244-1251   DOI   ScienceOn
19 Mano, H., F. Tanaka, A. Watanabe, H. Kaga, S. Okunish, and H. Morisaki. 2006. Culturable surface and endophytic bacterial flora of the maturing seeds of rice plants (Oryza sativa) cultivated in a paddy field. Microbes Environ. 21: 86-100   DOI   ScienceOn
20 Nautiyal, C. S., S. Mehta, and H. B. Singh. 2006. Biological control and plant-growth promotion by Bacillus strains from milk. J. Microbiol. Biotechnol. 16: 184-192   과학기술학회마을
21 Siciliano, S. D. and J. J. Germida. 1999. Taxonomic diversity of bacteria associated with the roots of field grown transgenic Brassica napus cv. Quest, compared to the nontransgenic B. napus cv. Excel and B. rapa cv. Parkland. FEMS Microbiol. Ecol. 29: 263-272   DOI
22 Holland, M. A., R. L. G. Long, and J. C. Polacco. 2002. Methylobacterium spp.: Phylloplane bacteria involved in cross-talk with the plant host? p. 125-135. In S. E. Lindow, E. I. Hecht-Poinar, and V. J. Elliot (eds.) Phyllosphere Microbiology. APS Press, St. Paul, Minn
23 Penalver, C. G. N., D. Morin, F. Cantet, O. Saurel, A. Milon, and J. A. Vorholt. 2006. Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett. 580: 561-567   DOI   ScienceOn
24 Whittenbury, R., S. L. Davies, and J. F. Wilkinson. 1970. Enrichment, isolation and some properties of methaneutilizing bacteria. J. Gen. Microbiol. 61: 205-218   DOI   ScienceOn
25 Ludemann, H., I. Arth, and W. Liesack. 2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Appl. Environ. Microbiol. 66: 754-762   DOI
26 Poonguzhali, S., M. Madhaiyan, and T. M. Sa. 2007. Production of acyl-homoserine lactone quorum sensing signals is wide-spread in Gram-negative Methylobacterium. J. Microbiol. Biotechnol. 17: 226-233   과학기술학회마을
27 Hengstmann, U., K. J. Chin, P. H. Janssen, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65: 5050-5058
28 Obendorf, R. L., J. L Koch, R. J. Goreki, R. A. Amable, and M. T. Aveni. 1990. Methanol accumulation in maturing seeds. J. Exp. Bot. 41: 489-495   DOI
29 Germida, J. J. and S. D. Siciliano. 2001. Taxonomic diversity of bacteria associated with the roots of modern, recent and ancient wheat cultivars. Biol.Fertil.Soils 33: 410-415   DOI
30 Holland, M. A. and J. C. Polacco. 1994. PPFMs and other contaminants: Is there more to plant physiology than just plant? Annu. Rev. Plant Physiol. Plant Mol. Biol. 45: 197-209   DOI
31 Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657   과학기술학회마을
32 De Leij, F. A. A. M., J. M. Whipps, and J. M. Lynch. 1993. The use of colony development for the characterization of bacterial communities in soils and roots. Microb. Ecol. 27: 81-97
33 Madhaiyan, M., S. Poonguzhali, J. H. Ryu, and T. M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminasecontaining Methylobacterium fujisawaense. Planta 224: 268-278   DOI   ScienceOn
34 Ryu, J. H., M. Madhaiyan, S. Poonguzhali, W. J. Yim, P. Indiragandhi, K. A. Kim, R. Anandham, J. C. Yun, K. H. Kim, and T. M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.) growth. J. Microbiol. Biotechnol. 16: 1622-1628   과학기술학회마을
35 Schmalenberger, A. and C. Tebbe. 2002. Bacterial community composition in the rhizosphere of a transgenic, herbicideresistant maize (Zea mays) and comparison to its nontransgenic cultivar Bosphore. FEMS Microbiol. Ecol. 40: 29-37   DOI
36 Pirttilä, A. M., H. Laukkanen, H. Pospiech, R. Myllylä, and A. Hohtola. 2000. Detection of intracellular bacteria in the buds of Scotch pine (Pinus sylvestris L.) by in situ hybridization. Appl. Environ. Microbiol. 66: 3073-3077   DOI