Browse > Article

Fatty Acid and Carotenoid Production by Sporobolomyces ruberrimus when Using Technical Glycerol and Ammonium Sulfate  

Razavi, Seyed Hadi (Department of Food Science & Engineering, Faculty of Biosystem Engineering, University of Tehran)
Mousavi, Seyed Mohammad (Department of Food Science & Engineering, Faculty of Biosystem Engineering, University of Tehran)
Yeganeh, Hassan Mehrabani (University College of Agriculture & Natural Resources, University of Tehran)
Marc, Ivan (Laboratoire des Science du Genie Chimique)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.10, 2007 , pp. 1591-1597 More about this Journal
Abstract
The production of carotenoids, lipid content, and fatty acid composition were all studied in a strain of Sporobolomyces ruberrimus when using different concentrations of technical glycerol as the carbon source and ammonium sulfate as the nitrogen source. The total lipids represented an average of 13% of the dry weight, and the maximum lipids were obtained when using 65.5 g/l technical glycerol (133.63 mg/g). The optimal conditions for fatty acid production were at $27^{\circ}C$ using 20 g of ammonium sulfate and a pH range from 6 to 7, which produced a fatty acid yield of $32.5{\pm}1\;mg/g$, including $1.27{\pm}0.15\;mg$ of linolenic acid (LNA), $7.50{\pm}0.45\;mg$ of linoleic acid (LLA), $5.50{\pm}0.35\;mg$ of palmitic acid (PA), $0.60{\pm}0.03\;mg$ of palmitoleic acid (PAL), $1.28{\pm}0.11\;mg$ of stearic acid (SA), $9.09{\pm}0.22\;mg$ of oleic acid, $2.50{\pm}0.10\;mg$ of erucic acid (EA), and $4.25{\pm}0.20\;mg$ of lignoceric acid (LCA), where the palmitic, oleic, and linoleic acids combined formed about 37% of the total fatty acids. The concentration of total carotenoids was 2.80 mg/g when using 20 g of ammonium sulfate, and consisted of torularhodin (2.70 mg/g) and $\beta$-carotene (0.10 mg/g), at $23^{\circ}C$ and pH 6. However, the highest amount with the maximum specific growth rate was obtained (${\mu}_{max}=0.096\;h^{-1}$) with an ammonium sulfate concentration of 30 g/l.
Keywords
Carotenoids; technical glycerol; Sporobolomyces ruberrimus; ammonium sulfate; fatty acid;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 7  (Related Records In Web of Science)
연도 인용수 순위
1 Lomascolo, A., E. Dubreucq, V. Perrier, and P. Galzy. 1994. Study of lipids in Lipomyces and Waltomyces. Can. J. Microbiol. 40: 724-729   DOI   ScienceOn
2 Meyer, P. S. and J. C. du Preez. 1994. Astaxanthin production by a Phaffia rhodozyma mutant on grape juice. World J. Microbiol. Biotechnol. 10: 178-183   DOI   ScienceOn
3 Perrier, V., E. Dubreucq, and P. Galzy. 1995. Fatty acid and carotenoid composition of Rhodotorula strains. Arch. Microbiol. 164: 173-179   DOI
4 Sugano, M., T. Ishida, K. Yoshida, K. Tanaka, M. Miwa, N. Arima, and A. Morita. 1986. Effects of mold oil containing $\gamma$-linolenic acid on the blood cholesterol and eicosanoid levels of rats. Agric. Biol. Chem. 50: 2483-2491   DOI
5 Razavi, S. H., F. Blanchard, and I. Marc. 2006. UV-HPLC/ APCI-MS method for separation and identification of the carotenoids produced by Sporobolomyces ruberrimus H110. Iran. J. Chem. Chem. Eng. 25: 1-10
6 Hayman, G. T., B. M. Mannarelli, and T. D. Leathers. 1995. Production of carotenoids by Phaffia rhodozyma grown on media composed of corn wet-milling co-products. J. Ind. Microbiol. 14: 389-395   DOI
7 Nor, A. F. 1984. Recueil des normes françaises des corps/ grains oleagineux et produits derives. 3e edition, 60-233, pp. 95
8 Aggelis, G., M. Komaitis, S. Papanikolaou, and G. Papankolaou. 1995. A mathematical model for the study of lipid accumulation in oleaginous microorganisms. I. Lipid accumulation during growth of Mucor circinelloides CBS 172-27 on a vegetable oil. Grasas y Aceites. 46: 169-173   DOI   ScienceOn
9 Kang, M. J., S. H. Yoon, Y. M. Lee, S. H. Lee, J. E. Kim, K. H. Jung, Y. C. Shin, and S. W. Kim. 2005. Enhancement of lycopene production in Esherichia coli by optimization of the lycopene synthetic pathway. J. Microbiol. Biotechnol.15: 880-886   과학기술학회마을
10 Kusdiyantini, E., P. Gaudin, G. Goma, and P. J. Blanc. 1998. Growth kinetics and astaxanthin production of Phaffia rhodozyma on a glycerol as a carbon source during batch fermentation. Biotechnol. Lett. 20: 929-934   DOI   ScienceOn
11 Yamauchi, H., H. Mori, T. Kobayashi, and S. Shimizu. 1993. Mass production of lipids by Lipomyces starkeyi in microcomputer aided fed-batch culture. J. Ferment. Technol. 61: 275-280
12 Kim, J. H., S. K. Choi, Y. S. Park, C. W. Yun, W. D. Cho, K. M. Chee, and H. I. Chang. 2006. Effect of culture conditions on astaxanthin formation in red yeast Xanthophyllomyces dendrorhous mutant JH1. J. Microbiol. Biotechnol. 16: 438-442   과학기술학회마을
13 Jacobson, G. K., S. O. Jolly, J. J. Sedmak, T. J. Skatrud, and J. M. Wasileski. 1994. Astaxanthin over-producing strains of Phaffia rhodozyma, methods for their cultivation, and their use in animal feeds. US Patent, WO 94/23594
14 Weete, J. D. 1980. Lipid Biochemistry of Fungi and Other Organisms. Plenum Press, New York, pp. 9-48
15 Davies, R. J. 1988. Yeast oil from cheese whey - process development, pp. 99-143. In R. S. Modern (ed.), Single Cell Oil. Longman, London
16 Lindberg, A. M. and G. Molin. 1993. Effect of temperature and glucose supply on the production of polyunsaturated fatty acids by the fungus Mortierella alpina CBS 343.66 in fermentor cultures. Appl. Microbiol. Biotechnol. 39: 450-455   DOI
17 Von Schacky, C. and J. Dyerberg. 2001. Omega 3 fatty acids from Eskimos to clinical cardiology - what took us so long? World Rev. Nutr. Diet 88: 90-99
18 Blagovic, B., J. Rupcic, M. Mesaric, K. Georgiu, and V. Maric. 2001. Lipid composition of Brewer's yeast. Food Technol. Biotechnol. 39: 175-181
19 Granger, L.-M., P. Perlot, G. Goma, and A. Pareilleux. 1993. Effect of various nutrient limitations on fatty acid production by Rhodotorula glutinis. Appl. Microbiol. Biotechnol. 38: 784-789   DOI
20 Ghanem, K., S. A. M. Sabry, and H. H. Yusef. 1990. Some physiological factors influencing lipid production by Rhodotorula glutinis from Egyptian beet molasses. J. Islam. Acad. Sci. 3, 4: 305-309
21 Ratledge, C. 1982. Microbial oils and fats: An assessment of their commercial potential. Prog. Ind. Microbiol. 16: 119-206
22 Buzzini, P. 2001. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J. Appl. Microbiol. 90: 843-847   DOI   ScienceOn
23 Veen, M. and C. Lang. 2004. Production of lipid compounds in the yeast Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 63: 635-646   DOI
24 Martin, A. M., L. Chun, and R. P. Thakor. 1993. Growth parameters for the yeast Rhodotorula rubra grown in peat extract. J. Ferment. Bioeng. 76: 321-325   DOI   ScienceOn
25 Okagbue, R. N. and M. Lewis. 1985. Influence of mixed culture conditions on yeast-wall hydrolytic activity of Bacillus circulans WL-12 and on extractability of astaxanthin from the yeast Phaffia rhodozyma. J. Appl. Bacteriol. 59: 243-255   DOI
26 Dyerberg, J. 1986. Linolenate-derived polyunsaturated fatty acids and prevention of atherosclerosis. Nutr. Rev. 44: 124-134
27 Kim, J. H. and H. I. Chang. 2006. High-level production of astaxanthin by Xanthophyllomyces dendrorhous mutant JH1 using chemical and light induction. J. Microbiol. Biotechnol. 16: 381-385   과학기술학회마을