Browse > Article

Lab-on-a-Chip for Monitoring the Quality of Raw Milk  

Choi Jeong-Woo (Department of Chemical and Biomolecular Engineering, and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Kim Young-Kee (Department of Chemical Engineering, Hankyong National University)
Kim Hee-Joo (Department of Chemical and Biomolecular Engineering, and Interdisciplinary Program of Integrated Biotechnology, Sogang University)
Lee Woo-Chang (Department of Chemical Engineering, Hankyong National University)
Seong Gi-Hun (Department of Applied Chemistry, Hanyang University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.8, 2006 , pp. 1229-1235 More about this Journal
Abstract
A lab-on-a-chip (LoC) was designed for simultaneous monitoring of microorganisms, antibiotic residues, somatic cells, and pH in raw milk. The LoC was fabricated from polydimethylsiloxane (PDMS) using microelectromechanical system (MEMS) technology, which consisted of two parts; a protein array and microchannel. The protein array was fabricated by immobilizing five types of antibodies corresponding to two microorganisms, two antibiotic residues, and somatic cells. A sol-gel film was deposited on a glass substrate to immobilize the antibodies. The target analytes in raw milk could be bound with the corresponding antibody by an immunoreaction, and the antigen-antibody complex was detected using fluorescence microscopy. SNARF-dextran was used as a pH indicator, and the SNARF-entrapped hydrogel was attached to the microchannel in the chip. After injecting the milk sample into the channel, the pH was measured by monitoring the change in fluorescence intensity by fluorescence microscopy. The on-chip simultaneous assay of two microorganisms (E. coli O157:H7 and Streptococcus agalactiae), two antibiotic residues (penicillin G and dihydrostreptomycin), and neutrophils was successfully accomplished using the proposed LoC system.
Keywords
Lab-on-a-chip; raw milk; microorganism; antibiotics; somatic cell; pH; protein array;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 10  (Related Records In Web of Science)
연도 인용수 순위
1 Arenkow, P., A. Kukhtin, S. Voloshchuk, V. Chupeeva, and A. Mirzabekov. 2000. Protein microchips: Use for immunoassay and enzymatic reactions. Anal. Biochern. 278: 123-131   DOI   ScienceOn
2 Chow, A. W. 2002. Lab-on-a-chip: Opportunities for chemical engineering. AIChE J. 48: 1590-1595   DOI   ScienceOn
3 Fujii, T. 2002. PDMS-based microfluidic devices for biomedical applications. Microelectr. Engin. 61-62: 907-914   DOI
4 Oh, B.-K., Y. K. Kim, W. Lee, Y. M. Bae, W. H. Lee, and J. W. Choi. 2003. Immunosensor for detection of Legionella pneumophila using surface plasmon resonance. Biosens. Bioelectron. 18: 605-611   DOI   ScienceOn
5 Schnappinger, P, E. Usleber, E. Martlbauer, and G. Terplan. 1993. Enzyme immunoassay for the detection of streptomycin and dihydrostreptomycin in milk. Food Agric. Immunol. 5: 67-74   DOI   ScienceOn
6 Baxter, G. A., J. P. Ferguson, M. C. O'Conner, and C. T. Elliott. 2001. Detection of streptomycin residues in whole milk using an optical immunobiosensor. J. Agric. Food Chem. 49: 3204-3207   DOI   ScienceOn
7 Schaeferling, M., S. Schiller, H. Paul, M. Kruschinan, P. Pavlickova, M. Meerkamp, C. Giammasi, and D. Kambhampati. 2002. Application of self assembly techniques in the design ofbiocompatible protein microarray surfaces. Electrophoresis 23: 3097-3105   DOI   ScienceOn
8 Gaudin, V., J. Fontaine, and P. Maris. 2001. Screening of penicillin residues in milk by a surface plasmon resonancebased biosensor assay: Comparison of chemical and enzymatic sample pre-treatment. Anal. Chim. Acta. 436: 191-198   DOI   ScienceOn
9 Oh, B.-K., W. Lee, B.-S. Chun, Y. M. Bae, W. H. Lee, J. W. Choi. 2005. The fabrication of protein chip based on surface plasmon resonance for detection of pathogens. Biosens. Bioelectron. 20: 1847-1850   DOI   ScienceOn
10 Park, I. S., D. K. Kim, and N. Kim. 2004. Characterization and food application of a potentiometric biosensor measuring $\beta$-lactam antibiotics. J. Microbiol. Biotechnol. 14: 698-706   과학기술학회마을
11 Strasser, A., R. Dietrich, E. Usleber, and E. Martlbauer. 2003. Immunochemical rapid test for multiresidue analysis of antimicrobial drugs in milk using monoclonal antibodies and hapten-glucose oxidase conjugates. Anal. Chim. Acta 495: 11-19   DOI   ScienceOn
12 Kukar, T., S. Eckenrode, Y. Gu, W. Lian, M. Megginson, J.-X. She, and D. Wu. 2002. Protein microarrays to detect protein-protein interactions using red and green fluorescent proteins. Anal. Biochem. 306: 50-54   DOI   ScienceOn
13 Kodadek, T. 2001. Protein microarrays: Prospects and problems. Chern. Biol. 8: 105-115   DOI   ScienceOn
14 Setford, S. J., R. M. Van Es, Y. F. Blankwater, and S. Kroger. 1999. Receptor binding protein amperometric affinity sensor for rapid $\beta$-Iactam quantification in milk. Anal. Chim. Acta 398: 13-22   DOI   ScienceOn
15 Verheijen, R., I. K. Osswald, R. Dietrich, and W. Haasfoot. 2000. Development of a one step strip test for the detection of (dihydro)streptomycin residues in raw milk. Food Agric. Immunol. 12: 31-40   DOI
16 Albracht, J. H. and M. S. De Wit. 1987. Analysis of gentamicin in raw material in pharmaceutical preparations by high-performance liquid chromatography. J. Chrornatogr. 389:306-311   DOI
17 Haasnoot, W., G. Cazemier, M. Koets, and A. Van Amerongen. 2003. Single biosensor immunoassay for the detection of five aminoglycosides in reconstituted skimmed milk. Anal. Chim. Acta 488: 53-60   DOI   ScienceOn
18 Haasnoot, W., E. E. M. G. Loomans, G. Cazemier, R. Dietrich, R. Verheijen, A. A. Bergwerff, and R. W. Stephany. 2002. Direct versus competitive biosensor immunoassays for the detection of (dihydro )streptomycin residues in milk. Food Agric. Immunol. 14: 15-28   DOI   ScienceOn
19 Gerhardt, G. C., C. D. C. Salisburg, and J. D. Macneil. 1994. Analysis of streptomycin and dihydrostreptomycin in milk by liquid chromatography. J. AOAC Int. 77: 765-767
20 Kelvin, H. L. 2001. Proteomics: A technology-driven and technology limited discovery science. Trends Biotechnol. 19: 217-222   DOI   ScienceOn
21 Kwak, B.-Y., B.-J. Kwon, C.-H. Kweon, and D.-H. Shon. 2004. Detection of Aspergillus, Penicillium, and Fusarium species by sandwich enzyme-linked immunosorbent assay using mixed monoclonal antibodies. J. Microbiol. Biotechnol. 14: 385-389
22 Oh, B.-K., Y. K. Kim, Y. M. Bae, W. H. Lee, and J. W. Choi. 2002. Detection of Escherichia coli O157:H7 using immunosensor based on surface plasmon resonance. J. Microbiol. Biotechnol. 12: 780-786
23 Eva, G., B. Peter, and S. Ase. 2002. Biosensor analysis of penicillin G in milk based on the inhibition of carboxypeptidase activity. Anal. Chim. Acta 468: 153-159   DOI   ScienceOn
24 Guggisberg, D. and H. Koch. 1995. Method for the quantitative determination of gentamicin in meat, liver and kidney by HPLC and post-column derivatization. Mitteilungen aus dem Gebiete der Lebensmitteluntersuchung und Hygiene 86: 14-28
25 Vinet, F., P. Chaton, and Y. FouilIet. 2002. Microarrays and microtluidic devices: Miniaturized systems for biological analysis. Microelectr. Engin. 61-62: 41-47   DOI
26 Choi, J. W., Y. S. Nam, and M. Fujihira. 2004. Nanoscale fabrication of biomolecular layer and its application to biodevices. Biotechnol. Bioprocess Eng. 9: 76-85   DOI   ScienceOn
27 Jacques, N., E. Harry, S. lise, L. Gerard, S. Jan, and S. Henk. 1999. A microbiological assay system for assessment of raw milk exceeding EU maxium residue levels. Int. Dairy J. 9: 85-90   DOI   ScienceOn
28 Cahill, D. J. 2000. Protein arrays: A high-throughput solution for proteomics research? Trends Biotechnol. 18: 47 -51   DOI   ScienceOn
29 Haasnoot, W., P. Stouten, G. Cazemier, A. Lommen, J. F. M. Nouws, and H. J. Keukens. 1999. Immunochemical detection of aminoglycosides in milk and kidney. Analyst 124: 301-305   DOI   ScienceOn