Browse > Article

Film-Forming Properties of Proteinaceous Fibrous Material Produced from Soybean Fermented by Bacillus natto  

Park Sang-Kyu (Bio/Molecular Informatics Center, Konkuk University)
Bae Dong-Ho (Division of Bioscience & Biotechnology, Konkuk University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.7, 2006 , pp. 1053-1059 More about this Journal
Abstract
The effectiveness of a proteinaceous fibrous material formed during commercial fermentation of soy protein (PFSP) and cysteine addition were evaluated in order to improve on the properties of soy protein-based films. Nine types of films were prepared at pH 7, 9, and 11, with heat treatments at $70^{\circ}C\;and\;90^{\circ}C$ for 30 min, by casting 5% (w/w) PFSP aqueous solution, containing 2.25% (w/w) glycerol, on to polystyrene plates. The tensile strength (TS) of films ranged from 3.88 to 6.87 MPa. The highest puncture strength (PS) was observed with pH 7.0 films prepared from PFSP solution heated at $70^{\circ}C$ (P<0.05). Alkaline pH and temperature caused a decrease in both the TS and PS of the films. The thickness of films ranged from $58\;to\;74{\mu}m$. Water vapor permeabilities of the films decreased with increasing pH and temperature. To produce films from PFSP, pH value of 7.0 to 9.0 and heat treatment of $70^{\circ}C\;to\;90^{\circ}C$ were needed. A soluble nature of PFSP films in water might be useful for preparation of hot water-soluble pouches. Cysteine addition could be necessary to produce films with increased TS and enhanced barrier properties. The combination treatment that provided the best combination of barrier and mechanical properties was the PFSP film prepared at pH 7.0 with addition of 1% cysteine. The films were good oxygen barriers.
Keywords
Fibrous material; Bacillus natto; edible film; cysteine; food packaging material;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Kim, H. W., K. M. Kim, E. J. Ko, S. K. Lee, S. D. Ha, K. B. Song, S. K. Park, K. S. Kwon, and D. H. Bae. 2004. Development of antimicrobial edible film from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 14: 1303-1309
2 McHugh, T. H., J. F. Aujard, and J. M. Krochta. 1994. Plasticized whey protein edible films: Water vapor permeability properties. J. Food Sci. 59: 416-419,423   DOI
3 Roy, S., C. L. Weller, M. G. Zeece, and R. F. Testin. 1995. Effect of heat on the physical and molecular properties of wheat gluten films. 12E-14. 1995 Annual Meeting of the Institute of Food Technologists, Anaheim, CA, Institute of Food Technologists, Chicago, IL, U.S.A
4 Wu, L. C. and R. P. Bates. 1973. Soy protein-lipid films: Studies on the film formation phenomenon. J. Food Sci. 37: 36-39   DOI
5 Kunte, L. F., A Gennadios, S. L. Cuppett, A. Hanna, and C. L. Weller. 1997. Cast films from soy protein isolates and fractions. Cereal Chem. 74: 115-118   DOI
6 Parris, N. and D. R. Coffin. 1997. Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films. J. Agric. Food Chem. 45: 1596-1599   DOI   ScienceOn
7 Wall, J. S., M. Friedman, L. H. Krull, J. F. Cavins, and A. C. Beckwith. 1968. Chemical modification of wheat gluten proteins and related model systems. J. Polymer Sci. 24: 147-161
8 Brandenburg, A. H., C. L. Weller, and R. F. Testin. 1993. Edible films and coatings from soy protein. J. Food Sci. 58: 1086-1089   DOI   ScienceOn
9 Fukushima, D. and J. Van Buren. 1970. Mechanisms of protein insolubilization during the drying of soy milk. Role of disulfide and hydrophobic bonds. Cereal Chem. 47: 687-696
10 Lee, H. J, K. W. Lee, K. H. Kim, H. K. Kim, and H. J. Lee. 2004. Antitumor activity of peptide fraction from traditional Korean soy sauce. J. Microbiol. Biotechnol. 14: 628-630
11 Sabato, S. F., B. Ouattara, H. Yu, G. D' Aprano, C. Le Tien, M. A. Mateescu, and M. Lacroix. 2001. Mechanical and barrier properties of cross-linked soy and whey protein based films. J. Agric. Food Chem. 49: 1397-1403   DOI   ScienceOn
12 Stuchell, Y. M. and M. J. Krochta. 1994. Enzymatic treatments and thermal effects on edible soy protein films. J. Food Sci. 59: 1332-1337   DOI   ScienceOn
13 Kester, J. J. and O. R. Fennema. 1986. Edible films and coatings: A review. Food Technol. 40: 47-59
14 Kim, H. W., E. J. Ko, S. K. Lee, S. D. Ha, K. B. Song, S. K. Park, D. H. Chung, K. S. Youn, and D. H. Bae. 2005. Physical, mechanical, and antimicrobial properties of edible film produced from defatted soybean meal fermented by Bacillus subtilis. J. Microbiol. Biotechnol. 15: 815-822   과학기술학회마을
15 Francis, F. J. and F. M. Clydesdale. 1975. Food Colorimetry: Theory and Applications. AVI, Westport, CT, U.S.A
16 Gennadios, A, A. H. Brandenburg, C. L. Weller, and R. F. Testin. 1993. Effect of pH on properties of wheat gluten and soy protein isolate films. J. Agric. Food Chem. 41: 1835-1839   DOI   ScienceOn
17 Gennadios, A, T. H. McHugh, C. L. Weller, and J. M. Krochta. 1994. Edible coating and films based on proteins, pp. 201-277. In Krochta, J. M., E. A Baldwin, and M. O. Nisperos-Carriedo (eds.), Edible Coatings and Films to Improve Food Quality. Technomic Publishing Co., Inc., Lancaster, PA, U.S.A
18 AOAC. 1990. Official Methods of Analysis, 15th Ed. Association of Official Analytical Chemists, Arlington, VA, U.S.A
19 Krochta, M. J. and C. D. De Mulder-Johnston. 1997. Edible and biodegradable polymer films: Challenges and opportunities. Food Technol. 51: 61-74
20 Salame, M. and S. Steingiser. 1977. Barrier polymers. Polym. Plast. Technol. Eng. 8: 155-175   DOI   ScienceOn
21 Yang, J. I., S. H. Lee, D. H. Hahm, I. H. Kim, and S. Y. Choi. 2004. Enhancement of calcium-binding quality of proglycinin peptides by chemical phosphorylation. J. Microbiol. Biotechnol. 14: 607-611
22 Reed, S. M. and C. Noricote. 1983. Chemical and immunological similarities between the phloem proteins of three genera ofthe curcubitaceae. Planta 158: 119-127   DOI   ScienceOn
23 McHugh, T. H., R. Avena-Bustillos, and J. M. Krochta. 1993. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation for thickness effect. J. Food Sci. 58: 889-903
24 BeMiller, J. N. and R. L. Whistler. 1996. Carbohydrates, In O. R. Fenema (ed.), Food Chemistry, 3rd Ed. Marcel Dekker Inc., NY, U.S.A