Browse > Article

Purification and Characterization of Bile Salt Hydrolase from Lactobacillus plantarum CK 102  

Ha Chul-Gyu (Department of Biochemistry and Molecular Biology, Hanyang University)
Cho Jin-Kook (Department of Dairy Science and Gyonggi-do Regional Research Center, Hankyong National University)
Chai Young-Gyu (Department of Biochemistry and Molecular Biology, Hanyang University)
Ha Young-Ae (Department of Occupational Medicine, Dong-Kang General Hospital)
Shin Shang-Hun (Department of Diagnostic Radiology, University of Ulsan College of Medicine, Ulsan University Hospital)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.7, 2006 , pp. 1047-1052 More about this Journal
Abstract
A bile salt hydrolase (BSH) was purified from Lactobacillus plantarum CK 102 and its enzymatic properties were characterized. This enzyme was successfully purified using ion-exchange chromatography with Q-Excellose and hydrophobic interaction chromatography with Butyl-Excellose. The purified enzyme showed a single protein band of 37 kDa by SDS-polyacrylamide gel electrophoresis, which was similar to the molecular weight of known BSHs. The amino acid sequence of GLGLPGDLSSMSR, determined by MALDI-TOF, was identical to that of BSH of L. plantarum WCFS1. Although this BSH hydrolyzed all of the six major human bile salts, glycine-conjugated bile acid was the best substrate, based on its specificity and $K_{m}$ value. Among the various substrates, the purified enzyme maximally hydrolyzed glycocholate with apparent $K_{m}$ and $V_{max}$ values of 0.5 mM and 94 nmol/min/mg, respectively. The optimal pH of the enzyme ranged from 5.8 to 6.3. This enzyme was strongly inhibited by thiol enzyme inhibitors such as iodoacetate and periodic acid.
Keywords
Bile salt hydrolase; Lactobacillus plantarum CK 102;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
연도 인용수 순위
1 Han, S.- Y., C.-S. Huh, Y.- T. Ahn, K.-S. Lim, Y.-J. Baek, and D.-H. Kim. 2005. Hepatoprotective effect of lactic acid bacteria. J. Microbiol. Biotechnol. 15: 887-890   과학기술학회마을
2 Lahm, H.- W. and H. Langen. 2000. Mass spectrometry: A tool for the identification of proteins separated by gels. Electrophoresis 21: 2105-2114   DOI   ScienceOn
3 Lammli, H. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685   DOI   ScienceOn
4 Lee, H. Y., J. H. Park, S. H. Seok, S. A. Cho, M. W. Baek, D. J. Kim, Y. H. Lee, and J. H. Park. 2004. Dietary intake of various lactic acid bacteria suppresses type 2 helper T cell production in antigen-primed mice splenocyte. J. Microbiol. Biotechnol.14: 167-170
5 Leer, R. J., H. Christiaens, W. Verstraete, L. Peters, M. Posno, and P. H. Pouwels. 1993. Gene disruption in Lactobacillus plantarum strain 80 by site-specific recombination: Isolation of a mutant strain deficient in conjugated bile salt hydrolase activity. Mol. Gen. Genet. 239: 269-272   DOI
6 Matsudaira, P. 1987. Sequence from picomole quantities of proteins eletroblotted onto polyvinylidene difluoride membranes. J. Biol. Chem. 262: 10035-10038
7 Pandey, A. and M. Mann. 2000. Proteomics to study genes and genomes. Nature 405: 837-846   DOI   ScienceOn
8 Saavedra, L., M. P. Taranto, F. Sesma, and G. F. De Valdez. 2003. Homemade traditional cheeses for the isolation of probiotic Enterococcus faecium strains. Int. J. Food Microbiol. 88: 241-245   DOI   ScienceOn
9 Taranto, M. P., G. Perdigon, M. Medici, and G. F. De Valdez. 2004. Animal model for in vivo evaluation of cholesterol reduction by lactic acid bacteria. Methods Mol. Biol. 268: 417-422
10 Macdonald, I. A., V. D. Bokkenheuser, J. Winter, A. M. McLernon, and E. H. Mosbach. 1983. Degradation of steroids in the human gut. J. Lipid Res. 24: 675-700
11 Gunn, J. S. 2000. Mechanisms of bacterial resistance and response to bile. Microbes Infect. 2: 907-913   DOI   ScienceOn
12 Mann, M., R. C. Hendrickson, and A. Pandery. 2001. Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70: 437-473   DOI   ScienceOn
13 Henzel, W. J., C. Watanabe, and J. T. Stults. 2001. Protein identification of the origins of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom. 14: 931-942   DOI   ScienceOn
14 Kim, G. B., S. H. Yi, and B. H. Lee. 2004. Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. Am. Dairy Sci. Assoc. 87: 258-266   DOI   ScienceOn
15 Lundeen, S. G. and D. C. Savage. 1990. Characterization and purification of bile salt hydrolase from Lactobacillus sp. strain 100-100. J. Bacteriol. 172: 4171-4177
16 Tanaka, H., K. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82: 2530-2535   DOI   ScienceOn
17 Christiaens, H., R. J. Leer, P. H. Pouwels, and W. Verstraete. 1992. Cloning and expression of a conjugated bile acid hydrolase gene from Lactobacillus plantarum by using a direct plate assay. Appl. Environ. Microbiol. 58: 3792-3798
18 Gopal-Srivastava, R. and P. B. Hylemon. 1990. Purification and characterization of bile salt hydrolase from Clostridium perfringens. J. Lipid Res. 29: 1079-1085
19 Ha, C. G., J. K. Cho, Y. G. Chai, and K. C. Heo. 2004. Isolation and identification of lactic acid bacteria having superior activity of the bile salts deconjugation. Korean J. Food Sci. Anim. Resour. 24: 164-170
20 Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
21 Jones, M. L., H. Chen, W. Ouyang, T. Metz, and S. Prakash. 2004. Microencapsulated genetically engineered Lactobacillus plantarum 80 (pCBH1) for bile acid deconjugation and its implication in lowering cholesterol. J. Biomed. Biotechnol. 1: 61-69
22 Han, Y.-J. and T.-S. Yu. 2005. Characterization of two forms of glucoamylase from traditional Korean nuruk fungi, Aspergillus coreanus NR 15-1. J. Microbiol. Biotechnol. 15: 239-246
23 Hancock, W. S., S. L. Wu, and P. Shieh. 2002. The challenges of developing a sound proteomics strategy. Proteomics 2: 352-359   DOI   ScienceOn
24 Wijaya, A., A. Hermann, H. Abriouel, I. Specht, N. M. Yousif, W. H. Holzapfel, and C. M. Franz. 2004. Cloning of the bile salt hydrolase (BSH) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of BSH genes in food enterococci. J. Food Prot. 67: 2772-2778   DOI
25 Yi, J. H., H.-K. Jang, S.-J. Lee, K.-E. Lee, and S.-G. Choi. 2004. Purification and properties of chitosanase from chitinolytic $\beta$-proteobacterium KNU3. J. Microbiol. Biotechnol. 14: 337-343   과학기술학회마을
26 Grill, J. P., F. Schneider, J. Crociani, and J. Ballonge. 1995. Purification and characterization of conjugated bile salt hydrolase from Bifidobacterium longum BB536. Appl. Environ. Microbiol. 61: 2577-2582
27 Griffin, T. J. and R. Aebersold. 2001. Advances in proteome analysis by mass spectrometry. J. Biol. Chem. 276: 45497-45500   DOI   ScienceOn
28 Ane, K., M. E. Ricarda, K. J. Soren, and B. J. Bent. 2002. Quantitative determination of bile salt hydrolase activity in bacteria isolated from the small intestine of chickens. Am. Soc. Microbiol. 68: 6425-6428
29 Kleerebezem, M., T. Boekhorst, and R. Kranenburg. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Microbiology 100: 1990-1995
30 Coleman, J. P. and L. L. Hudson. 1995. Cloning and characterization of conjugated bile acid hydrolase gene from Clostridium perfringens. Appl. Environ. Microbiol. 61: 2514-2520
31 Elkins, C. A. and D. C. Savage. 1988. Identification of genes encoding conjugated bile salt hydrolase and transport in Lactobacillus johnsonii 100-100. J. Appl. Bacteriol. 49: 193-197
32 Taranto, M. P., M. L. Fernandez Murga, G. Lorca, and G. F. De Valdez. 2003. Bile salts and cholesterol induce changes in the lipid cell membrane of Lactobacillus reuteri. J. Appl. Microbiol. 95: 86-91   DOI   ScienceOn