Browse > Article

Identification of Proteins Affected by Iron in Saccharomyces cerevisiae Using Proteome Analysis  

Lieu Hae-Youn (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Song Hyung-Seok (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Yang Seung-Nam (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Kim Jae-Hwan (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Kim Hyun-Joong (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Park Young-Doo (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Park Cheon-Seok (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Kim Hae-Yeong (Institute of Life and Resources and Graduate School of Biotechnology, Kyung Hee University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.6, 2006 , pp. 946-951 More about this Journal
Abstract
To study the effect of iron on Saccharomyces cerevisiae, whole-cell proteins of Saccharomyces cerevisiae were extracted and subjected to two-dimensional polyacrylamide gel electrophoresis (2D-PAGE), and differentially expressed proteins were identified. The proteins separated were further identified by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry and were compared with a protein database. Of more than 300 spots separated by molecular weight and isoelectric points, 27 differentially expressed spots were identified. Ten proteins were found to be differentially expressed at high iron concentration. Triosephosphate isomerase (TPI), YDR533C hypothetical protein, superoxide dismutase (SOD), 60 kDa heat-shock protein (HSP60), pyruvate dehydrogenase beta subunit 1 (PDB1), and old yellow enzyme 2 (OYE2) were upregulated, whereas thiol-specific antioxidant (TSA), regulatory particle non-ATPase subunit 8 (RPN8), thiol-specific peroxiredoxin 1 (AHP1), and fructose-1, 6-bisphosphate adolase (FBA) were downregulated by iron. Based on the result, we propose that SOD upregulated by iron would protect the yeast from oxidative stress by iron, and that TSA downregulated by iron would render cells hypersensitive to oxidative stress.
Keywords
Iron; MALDI-TOF; Saccharomyces cerevisiae; two-dimensional electrophoresis;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
1 Boucherie, H. 1985. Protein synthesis during transition and stationary phases under glucose limitation in Saccharomyces cerevisiae. J. Bacteriol. 161: 385-392
2 Kim, M. J., H. J. Chung, S. M. Park, S. G. Park, D. K. Chung, M. S. Yang, and D. H. Kim. 2004. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-based cloning of enolase, ENO1, from Cryphonectria parasitica. J. Microbiol. Biotechnol. 14: 620-627
3 Lee, J. L., S. N. Yang, C. S. Park, D. I. Jeoung, and H. Y. Kim. 2004. Purification and glycosylation pattern of human L-ferritin in Pichia pastoris. J. Microbiol. Biotechnol. 14: 68-73
4 Molloy, M. P., N. D. Phadke, J. R. Maddock, and P. C. Andrews. 2001. Two-dimensional electrophoresis and peptide mass fingerprinting of bacterial outer membrane proteins. Electrophoresis 22: 1686-1696   DOI   ScienceOn
5 Niino, Y. S., S. Chakraborty, B. J. Brown, and V. Massey. 1995. A new old yellow enzyme of Saccharomyces cerevisiae. J. Biol. Chem. 270: 1983-1991   DOI
6 Park, S. G., M. K. Cha, W. Jeong, and I. H. Kim. 2000. Distinct physiological functions of thiol peroxidase isoenzymes in Saccharomyces cerevisiae. J. Biol. Chem. 275: 5723-5732   DOI   ScienceOn
7 Wodicka, L., H. Dong, M. Mittmann, M. H. Ho, and D. J. Lockhart. 1997. Genomewide expression monitoring in Saccharomyces cerevisiae. Nat. Biotechnol. 15: 1359-1367   DOI   ScienceOn
8 Yim, M. B., H. Z. Chae, S. G. Rhee, P. B. Chock, and E. R. Stadtman. 1994. On the protective mechanism of the thiol-specific antioxidant enzyme against the oxidative damage of biomacromolecules. J. Biol. Chem. 269: 1621-1626
9 Park, Y. S., C. W. Yun, J. Y. Kong, T. H. Kim, and H. C. Sung. 2004. High copy Rme1p suppresses iron-induced cell growth defect of Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 14: 470-473
10 Barisani, D., R. Meneveri, E. Ginelli, C. Cassani, and D. Conte. 2002. Iron overload and gene expression in HepG2 cells: Analysis by differential display. FEBS Lett. 469: 208-212   DOI   ScienceOn
11 Gygi, S. P., Y. Rochon, B. R. Franza, and R. Aebersold. 1999. Correlation between protein and mRNA abundance in yeast. Mol. Cell. Biol. 19: 1720-1730   DOI
12 Harder, A., R. Wildgruber, A. Nawrocki, S. J. Fey, P. M. Larsen, and A. Gorg. 1999. Comparison of yeast cell protein solubilization procedures for two-dimensional electrophoresis. Electrophoresis 20: 826-829   DOI   ScienceOn
13 Van Ho, A., D. M. Ward, and J. Kaplan. 2002. Transition metal transport in yeast. Annu. Rev. Microbiol. 56: 237-261   DOI   ScienceOn
14 Foury, F. and D. Talibi. 2001. Mitochondrial control of iron homeostasis: A genome wide analysis of gene expression in a yeast frataxin-deficient strain. J. Biol. Chem. 276: 7762-7768   DOI   ScienceOn
15 Dani, V., W. J. Simon, M. Duranti, and R. R. D. Croy. 2005. Changes in the tobacco leaf apoplast proteome in response to salt stress. Proteomics 5: 737-745   DOI   ScienceOn
16 Ye, Z. and J. R. Connor. 2000. Identification of iron responsive genes by screening cDNA libraries from suppression subtractive hybridization with antisense probes from three iron conditions. Nucleic Acids Res. 28: 1802-1807   DOI
17 Trotter, E. W., C. M. F. Kao, L. Berenfeld, D. Botstein, G. A. Petsko, and J. V. Gray. 2002. Misfolded proteins are competent to mediate a subset of the responses to heat shock in Saccharomyces cerevisiae. J. Biol. Chem. 277: 44817-44825   DOI   ScienceOn
18 Hart, P. J., M. M. Balbirnie, N. L. Ogihara, A. M. Nersissian, M. S. Weiss, J. S. Valentine, and D. Eisenberg. 1999. A structure-based mechanism for copper-zinc superoxide dismutase. Biochemistry 38: 2167-2178   DOI   ScienceOn
19 Lopez, M. A. and F. C. Martos. 2004. Iron availability: An updated review. Int. J. Food Sci. Nutr. 55: 597-606   DOI   ScienceOn
20 Goffeau, A., B. G. Barrell, H. Bussey, R. W. Davis, B. Dujon, H. Feldmann, F. Galibert, J. D. Hoheisel, C. Jacq, M. Johnston, E. J. Louis, H. W. Mewes, Y. Murakami, P. Philippsen, H. Tettelin, and S. G. Oliver. 1996. Life with 6000 genes. Science 274: 546-547   DOI   ScienceOn
21 Kim, Y. C., C. S. Kim, B. H. Cho, and A. J. Anderson. 2004. Major Fe-superoxide dismutase (FeSOD) activity in Pseudomonas putida is essential for survival under conditions of oxidative stress during microbial challenge and nutrient limitation. J. Microbiol. Biotechnol. 14: 859-862
22 Park, S., M. Lee, H. Y. Kim, and D. I. Jeoung. 2002. Proteome analysis of 5-fluorouracil-resistance-associated protein in human gastric cancer cells. Biotechnol. Lett. 24: 1141-1145   DOI   ScienceOn
23 Vido, K., D. Spector, G. Lagniel, S. Lopez, M. Toledano, and J. Labarre. 2001. A proteome analysis of the cadmium response in Saccharomyces cerevisiae. J. Biol. Chem. 276: 8469-8474   DOI   ScienceOn
24 Slekar, K. H., D. J. Kosman, and C. Culotta. 1996. The yeast copper/zinc superoxide dismutase and the pentose phosphate pathway play overlapping roles in oxidative stress protection. J. Biol. Chem. 271: 28831-28836   DOI   ScienceOn
25 Crichton, R. R., S. Wilmet, R. Legssyer, and R. J. Ward. 2002. Molecular and cellular mechanisms of iron homeostasis and toxicity in mammalian cells. J. Inorg. Biochem. 91: 9-18   DOI   ScienceOn