Browse > Article

Identification of a Gene Required for Gliding Motility in Myxococcus xanthus  

Lee Cha-Yul (Department of Biotechnology, Hoseo University)
Chung Jin-Woo (Department of Biotechnology, Hoseo University)
Kim Ji-Hoon (Department of Biotechnology, Hoseo University)
Cho Kyung-Yun (Department of Biotechnology, Hoseo University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.5, 2006 , pp. 771-777 More about this Journal
Abstract
A novel gene (agiA) required for adventurous gliding motility in Myxococcus xanthus has been identified. Null mutations in this gene caused defects in the gliding movement of isolated cells, suggesting that it belongs to one of the A-motility genes. The isolated agiA mutant cells neither glided nor produced slime trails on agar surface. However, agiA was different from other known A-motility genes in that the agiA mutant created in the $S^-$ mutant background glided in the swarm of cells, since other known A-motility mutants created in the $S^-$ mutant background do not move in the swarm of cells. The agiA mutant was also defective in fruiting body development. Sequence analysis predicted that agiA encodes a 787-amino-acid protein with eight tripeptide repeat motifs.
Keywords
Myxobacteria; gliding motility; Myxococcus xanthus;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Burchard, R. P. 1984. Gliding motility and taxes, pp. 139- 161. In E. Rosenberg (ed.), The Myxobacteria. Springer-Verlag, New York, U.S.A
2 Lunsdorf, H. and H. U. Schairer. 2001. Frozen motion of gliding bacteria outlines inherent features of the motility apparatus. Microbiology 147: 939-947   DOI
3 McBride, M. J., P. Hartzell, and D. R. Zusman. 1993. Myxospores and fruiting body morphogenesis, pp. 285-305. In M. Dworkin and D. Kaiser (eds.). Myxobacteria II. ASM Press, Washington, D.C
4 Pate, J. and L. Chang. 1979. Evidence that gliding motility in prokaryotic cells is driven by rotary assemblies in the cell envelopes. Curr. Microbiol. 2: 59-64   DOI
5 Shi, W. and D. R. Zusman. 1993. The two motility systems of Myxococcus xanthus show different selective advantages on various surfaces. Proc. Natl. Acad. Sci. USA 90: 3378-3382
6 Sutherland, I. W. and S. Thomson. 1975. Comparison of polysaccharides produced by Myxococcus strains. J. Gen. Microbiol. 89: 124-132   DOI   ScienceOn
7 Wolgemuth, C., E. Hoiczyk, D. Kaiser, and G. Oster. 2002. How myxobacteria glide. Curr. Biol. 12: 369-377   DOI   ScienceOn
8 Schultz, J., R. R. Copley, T. Doerks, C. P. Ponting, and P. Bork. 2000. SMART: A Web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 28: 231-234   DOI
9 Lu, A., K. Cho, W. P. Black, X. Duan, R. Lux, Z. Yang, H. B. Kaplan, D. R. Zusman, and W. Shi. 2005. Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol. Microbiol. 55: 206-220   DOI   ScienceOn
10 McBride, M. 2001. Bacterial gliding motility: Multiple mechanisms for cell movement over surfaces. Annu. Rev. Microbiol. 55: 49-75   DOI   ScienceOn
11 Spormann, A. 1999. Gliding motility in bacteria: Insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63: 621-641
12 Vlamakis, H. C., J. R. Kirby, and D. R. Zusman. 2004. The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol. Microbiol. 52: 1799-1811   DOI   ScienceOn
13 Kreppel, L. K., M. A. Blomberg, and G. W. Hart. 1997. Dynamic glycosylation of nuclear and cytosolic proteins. Cloning and characterization of a unique O-GlcNAc transferase with multiple tetratricopeptide repeats. J. Biol. Chem. 272: 9308-9315   DOI   ScienceOn
14 Shin, N. R., C. H. Baek, D. Y. Lee, Y. W. Cho, D. K. Park, K. E. Lee, K. S. Kim, and H. S. Yoo. 2005. luxS and smcR quorumsensing system of Vibrio vulnificus as an important factor for in vivo survival. J. Microbiol. Biotechnol. 15: 1197-1206   과학기술학회마을
15 Youderian, P., N. Burke, D. J. White, and P. L. Hartzell. 2003. Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol. Microbiol. 49: 555-570   DOI   ScienceOn
16 Hodgkin, J. and D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Two gene systems control movement. Mol. Gen. Genet. 171: 177-191   DOI
17 Campos, J. M. and D. R. Zusman. 1975. Regulation of development in Myxococcus xanthus: Effect of 39:59-cyclic AMP, ADP, and nutrition. Proc. Natl. Acad. Sci. USA 72: 518-522
18 Hoiczyk, E. and W. Baumeister. 1998. The junctional pore complex, a prokaryotic secretion organelle, is the molecular motor underlying gliding motility in cyanobacteria. Curr. Biol. 8: 1161-1168   DOI   ScienceOn
19 Hodgkin, J. and D. Kaiser. 1979. Genetics of gliding motility in Myxococcus xanthus (Myxobacterales): Genes controlling movement of single cells. Mol. Gen. Genet. 171: 167-176   DOI
20 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI
21 Dworkin, M. and D. Kaiser. 1993. Myxobacteria II. ASM Press, Washington, D.C.
22 Kaiser, D. 2000. Bacterial motility: How do pili pull? Curr. Biol. 10: R777-R780   DOI   ScienceOn
23 Stephens, K., P. Hartzell, and D. Kaiser. 1989. Gliding motility in Myxococcus xanthus: mgl locus, RNA, and predicted protein products. J. Bacteriol. 171: 819-830   DOI
24 Lim, M. S., M. H. Lee, J. H. Lee, H. M. Ju, N. Y. Park, H. S. Jeong, J. E. Rhee, and S. H. Choi. 2005. Identification and characterization of the Vibrio vulnificus malPQ operon. J. Microbiol. Biotechnol. 15: 616-625   과학기술학회마을
25 Burchard, R. P. 1982. Trail following by gliding bacteria. J. Bacteriol. 152: 495-501
26 Arnold, J. W. and L. J. Shimkets. 1988. Inhibition of cell-cell interactions in Myxococcus xanthus by congo red. J. Bacteriol. 170: 5765-5770   DOI
27 Bowden, M. G. and H. B. Kaplan. 1998. The Myxococcus xanthus lipopolysaccharide O-antigen is required for social motility and multicellular development. Mol. Microbiol. 30: 275-284   DOI   ScienceOn
28 Cho, K. and D. R. Zusman. 1999. AsgD, a new twocomponent regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol. Microbiol. 34: 268-281   DOI   ScienceOn
29 Rodriguez, A. M. and A. M. Spormann. 1999. Genetic and molecular analysis of cglB, a gene essential for single-cell gliding in Myxococcus xanthus. J. Bacteriol. 181: 4381-4390
30 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A
31 Lapidus, I. R. and H. C. Berg. 1982. Gliding motility of Cytophaga sp. strain U67. J. Bacteriol. 151: 383-398
32 Park, S., J. Kim, B. Lee, D. R. Zusman, and K. Cho. 2003. HpkA, a histidine protein kinase homolog, is required for fruiting body development in Myxococcus xanthus. J. Microbiol. Biotechnol. 13: 400-405
33 Link, A. J., D. Phillips, and G. M. Church. 1997. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli: Application to open reading frame characterization. J. Bacteriol. 179: 6228-6237   DOI
34 Keller, K. H., M. Grady, and M. Dworkin. 1983. Surface tension gradients: Feasible model for gliding motility of Myxococcus xanthus. J. Bacteriol. 155: 1358-1366
35 White, D. J. and P. L. Hartzell. 2000. AglU, a protein required for gliding motility and spore maturation of Myxococcus xanthus, is related to WD-repeat proteins. Mol. Microbiol. 36: 662-678   DOI   ScienceOn
36 Ju, H. M., I. G. Hwang, G. J. Woo, T. S. Kim, and S. H. Choi. 2005. Identification of the Vibrio vulnificus fexA gene and evaluation of its influence on virulence. J. Microbiol. Biotechnol. 15: 1337-1345   과학기술학회마을
37 Yamanaka, K., M. Inouye, and S. Inouye. 1999. Identification and characterization of five cspA homologous genes from Myxococcus xanthus. Biochim. Biophys. Acta 1447: 357-365   DOI