Browse > Article

Characteristics of Immobilized PVA Beads in Nitrate Removal  

Cho Kyoung-Sook (Department of Biotechnology and Bioengineering, Pukyong National University)
Park Kyoung-Joo (Department of Biotechnology and Bioengineering, Pukyong National University)
Jeong Hyun-Do (Department of Aquatic Life Medicine, Pukyong National University)
Nam Soo-Wan (Department of Biotechnology and Bioengineering, Dong-Eui University)
Lee Sang-Joon (Department of Microbiology, Busan National University)
Park Tae-Joo (Department of Environmental Engineering, Busan National University)
Kim Joong-Kyun (Department of Biotechnology and Bioengineering, Pukyong National University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.3, 2006 , pp. 414-422 More about this Journal
Abstract
Before applying PVA bio-beads to practical biological treatment of nitrate-containing wastewater, their characteristics were examined. PVA bio-beads could steadily produce nitrogen gas from nitrate for 28 batches with 0.04 ml/l/h of the maximum gas production rate; however, the maximum gas production rate dropped remarkably thereafter with apparent deformation of beads. Addition of 2.2% solution containing 1% casamino acid, 1% yeast extract, 0.1% mineral solution, and 0.1% vitamin solution to the culture medium resulted in not only recovery of activity of deactivated beads, but also a higher rate of gas production. Calculation of economic benefit for the use of bio-beads in a long-run operation indicated that reactivation of bio-beads by chemicals had economical advantages over packing new bio-beads in the system. The continuously stirred bioreactor exhibited a satisfactory performance at HRT of 20.0 h. With a 9.5 mg $NO_{3}^{-}N/l/h$ nitrate removal rate, nitrate could completely be removed without nitrite accumulation. The use of PVA bio-beads in nitrate removal appears very promising.
Keywords
PVA bio-beads; activity of deactivated beads; economic calculation; nitrate removal;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Jun, B.-H., K. Miyanage, Y. Tanji, and H. Unno. 2003. Removal of nitrogenous and carbonaceous substances by a porous carrier-membrane hybrid process for wastewater treatment. Biochem. Eng. J. 14: 37-44   DOI   ScienceOn
2 Kariminiaae-Hamefaani, H.-R., K. Kanda, and F. Kato. 2004. Denitrification activity of the bacterium Pseudomonas sp. ASM-2-3 isolated from the Ariake Sea Tideland. J. Biosci. Bioeng. 97: 39-44
3 Kim, S. H., S. H. Song, and Y. J. Yoo. 2004. The pH as control parameter for oxidation reduction potential on the denitrification by Ochrobacterum anthropi SY509. J. Microbiol. Biotechnol. 14: 639-642
4 Lemmer, H., G. Lind, G. Metzner, L. Nitschke, and M. Schade. 1998. Vitamin addition in biological wastewater treatment. Water Sci. Technol. 37: 395-398   DOI
5 Rostron, W. M., D. C. Struckey, and A. A. Young. 2001. Nitrification of high strength ammonia wastewaters: Comparative study of immobilisation media. Water Res. 35: 1169-1178   DOI   ScienceOn
6 Schulthess, R., M. Kuhni, and W. Gujer. 1995. Release of nitric and nitrous oxides from denitrifying activated sludge. Water Res. 29: 215-226   DOI   ScienceOn
7 Koike, I. and A. Hattori. 1975. Growth yield of a denitrifying bacterium, Pseudomonas denitrificans, under aerobic and denitrifying conditions. J. Gen. Microbiol. 88: 1-10   DOI   ScienceOn
8 Chen, K.-C., S.-C. Lee, S.-C. Chin, and J.-Y. Houng. 1998. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme Microb. Technol. 23: 311-320   DOI   ScienceOn
9 Nussinovich, A., Y. Aboutboul, Z. Gershon, and J. van Rijn. 1996. Changes in mechanical, structural, and denitrifying properties of entrapped Pseudomonas stutzeri bacteria preparations. Biotechnol. Prog. 12: 26-30   DOI   ScienceOn
10 Chen, K.-C., S.-J. Chen, and J.-Y. Houng. 1996. Improvement of gas permeability of denitrifying PVA gel beads. Enzyme Microb. Technol. 18: 502-506   DOI   ScienceOn
11 Shen, J. and O. Hirayama. 1993. Denitrification of PVAimmobilized denitrifying photosynthetic bacterium, Rhodobacter sphaeroides. J. Ferment. Bioeng. 75: 43-47   DOI   ScienceOn
12 Lee, N. M. and T. Welander. 1996. The effect of different carbon sources on respiratory denitrification in biological wastewater treatment. J. Ferment. Bioeng. 82: 277-285   DOI   ScienceOn
13 Jefferson, B., J. E. Burgess, A. Pochon, J. Harkness, and S. J. Judd. 2001. Nutrient addition to enhance biological treatment of greywater. Water Res. 35: 2702-2710   DOI   ScienceOn
14 Nagadomi, H., T. Hiromitsu, K. Takeno, M. Watanabe, and K. Sasaki. 1999. Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. J. Biosci. Bioeng. 87: 189-193   DOI   ScienceOn
15 Wijffels, R. H., G. Englund, J. H. Hunik, E. J. T. M. Leenan, A. Bakketun, A. Gunther, J. M. Obon de Castro, and J. Tramper. 1995. Effects of diffusion limitation on immobilized nitrifying micro-organisms at low temperatures. Biotechnol. Bioeng. 45: 1-9   DOI   ScienceOn
16 Hashimoto, S. and K. Furukawa. 1987. Immobilization of activated sludge by PVA-boric acid method. Biotechnol. Bioeng. 30: 52-59   DOI   ScienceOn
17 Song, S. H., S. H. Yeom, S. S. Choi, and Y. J. Yoo. 2003. Effect of oxidation-reduction potential on denitrification by Ochrobacterum anthropi SY509. J. Microbiol. Biotechnol. 13: 473-476
18 Wijffels, R. H., G. C. Schukking, and J. Tramper. 1990. Characterization of a denitrifying bacteria immobilized in kcarrageenan. Appl. Microbiol. Biotechnol. 34: 399-403
19 Kim, J. K., S.-K. Kim, and S.-H. Kim. 2001. Characterization of immobilized denitrifying bacteria isolated from municipal sewage. J. Microbiol. Biotechnol. 11: 756-762
20 Chen, K.-C. and Y. F. Lin. 1994. Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enzyme Microb. Technol. 16: 79-83   DOI   ScienceOn
21 Park, E.-J., J.-K. Seo, J. K. Kim, K.-H. Suh, and S.-K. Kim. 2000. Denitrification characteristics and microorganism composition of acclimated denitrifier consortium. J. Microbiol. Biotechnol. 10: 410-414
22 Pai, S.-L, N.-M. Chong, and C.-H. Chen. 1999. Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresour. Technol. 68: 179-185   DOI   ScienceOn
23 Tartakovsky, B., L. Petti, J. Hawari, and S. R. Guiot. 1998. Immobilization of anaerobic sludge using chitosan crosslinked with lignosulfonate. J. Indust. Microbiol. 20: 45-47   DOI
24 Matsumura, M., H. Tsubota, O. Ito, P.-C. Wang, and K. Yasuda. 1997. Development of bioreactors for denitrification with immobilized cells. J. Ferment. Bioeng. 84: 144-150   DOI   ScienceOn