Browse > Article

Continuous Production of Pullulan by Aureobasidium pullulans HP-2001 with Feeding of High Concentration of Sucrose  

Seo Hyung-Phil (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University)
Jo Kang-Ik (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University)
Son Chang-Woo (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University)
Yang Jae-Kyoon (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University)
Chung Chung-Han (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University)
Nam Soo-Wan (Department of Biotechnology & Bioengineering, College of Engineering, Dong-Eui University)
Kim Sung-Koo (Department of Biotechnology & Bioengineering, College of Fisheries Science, Pukyung National University)
Lee Jin-Woo (Division of Applied Biotechnology, College of Natural Resources & Life Science, Dong-A University)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.3, 2006 , pp. 374-380 More about this Journal
Abstract
In this study, glucose, sucrose, and dextrin were found to be better carbon sources for the production of pullulan by Aureobasidium pullulans HP-2001. Maximal production of pullulan with 200 g/l sucrose as a carbon source was 54.2 g/l. The highest yield of pullulan from sucrose was 0.40, when the sugar concentration was 100 g/1. Optimal conditions for the continuous production of pullulan by A. pullulans HP-2001 in a 7-1 bioreactor were determined by studying the effects of composition of feed solution, dilution rate, and concentration of sucrose in the feed solution. Pullulan concentration and productivity with 100 g/l glucose and 2.5 g/l yeast extract were 38.1 g/l and 0.53 g/l h for 72 h, respectively, in a batch culture of A. pullulans HP-2001. When the substituted medium contained 100 g/l sucrose, 2.5 g/l yeast extract, and mineral salts, which is the same composition as the medium for the production of pullulan, the pullulan concentration and productivity were 74.9 g/l and 0.55 g/l h for 120 h, respectively. The production of pullulan at the steady state increased with a dilution rate up to 0.015/h, and its concentration was 78.4 g/l with a weight average molecular weight ($M_w$) of $4.0{\times}10^5$. Unlike a batch culture, however, the decline of the $M_w$ and the number average molecular weight ($M_n$) of pullulan was not found in the continuous culture of A. pullulans HP-2001. When the concentration of sucrose in the feed solution was 200 g/l, 113.5 g/l of pullulan was obtained at the steady state. The steady state was maintained longer in the continuous culture fed with the feed solution containing 200 g/l sucrose than when fed with the feed solutions containing either 100 or 150 g/l sucrose.
Keywords
Pullulan; Aureobasidium pullulans; continuous culture; dilution rate; molecular weight;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 12  (Related Records In Web of Science)
연도 인용수 순위
1 Aremenate, P. M., F. Fava, and D. Kafkewitz. 1995. Effect of yeast extract on growth kinetics during aerobic biodegradation of chlorobenzoic acids. Biotechnol. Bioeng. 47: 227-283   DOI   ScienceOn
2 Bae, S. G., Y. Sugano, and M. Shoda. 2005. Comparison of bacterial cellulose production in a jar fermentor between Acetobacter xylinum BPR2001 and its mutant, acetannonproducing strain EP1. J. Microbiol. Biotechnol. 15: 247- 253   과학기술학회마을
3 Catley, B. J. and W. J. Whelan. 1971. Observations on the structure of pullulan. Arch. Biochem. Biophys. 143: 138- 142   DOI   ScienceOn
4 Leathers, T. D. 1993. Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. FEMS Microbiol. Lett. 110: 217-222   DOI
5 Poukas, T. 1998. Pretreatment of beet molasses to increase pullulan production. Process Biochem. 33: 805-810   DOI   ScienceOn
6 Reesley, M., B. B. Jorgensen, and O. B. Jorgensen. 1996. Exopolysaccharide production and morphology of Aureobasidium pullulans grown in continuous cultivation with varying ammonium-glucose ratio in the growth medium. J. Biotechnol. 51: 131-135   DOI   ScienceOn
7 Ronen, M., H. Guterman, and Y. Shabtai. 2002. Monitoring and control of pullulan producing vision sensor. Biochem. Biophys. Methods 51: 243-249   DOI   ScienceOn
8 Seo, H. P., C. W. Son, C. H. Chung, D. I. Jung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2003. Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Biores. Technol. 95: 293-299
9 Shin, Y. C., Y. H. Kim, H. S. Lee, Y. N. Kim, and S. M. Byun. 1987. Production of pullulan by fed-batch fermentation. Biotechnol. Lett. 9: 621-624   DOI
10 Ueda, S., K. Fusita, K. Komatsu, and Z. Nakashima. 1963. Polysaccharide produced by the genus Pullularia. Appl. Microbiol. 11: 211-215
11 Kim, H. H., J. G. Na, Y. K. Chang, G. T. Chun, S. J. Lee, and Y. H. Jeong. 2004. Optimization of submerged culture conditions for mycelial growth and exopolysaccharides production by Agaricus blazei. J. Microbiol. Biotechnol. 14: 944-951
12 Sharmila, M., K. Ramanand, and N. Serhunathan. 1989. Effect of yeast extract on the degradation of organophosphorous insecticides by soil enrichment and bacterial cultures. Can. J. Microbiol. 35: 1105-1110   DOI
13 Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356   DOI
14 Roukas, T. 1999. Pullulan production from brewery wastes by Aureobasidium pullulans. World J. Microbiol. Biotechnol. 15: 447-450   DOI
15 Madi, N., B. McNeil, and L. M. Harvey. 1997. Effect of exogenous calcium on morphological development and biopolymer synthesis in the fungus Aureobasidum pullulans. Enz. Microb. Technol. 21: 102-107   DOI   ScienceOn
16 Shin, H. T., S. Y. Baig, S. W. Lee, D. S. Suh, S. T. Kwon, Y. B. Lim, and J. H. Lee. 2004. Production of fructooligosaccharides from molasses by Aureobasidium pullulans cells. Biores. Technol. 93: 298-302
17 Taguchi, R., Y. Kikuchi, Y. Sakano, and T. Kobayashi. 1973. Structural uniformity of pullulan produced by several strains of Pullularia pullulans. Agric. Biol. Chem. 37: 1583-1588   DOI
18 Youssef, F., T. Roukas, and C. G. Biliaderis. 1999. Pullulan production by a non-pigmented strain of Aureobasidum pullulans using batch and fed batch culture. Process Biochem. 34: 355-366   DOI   ScienceOn
19 Shin, Y. C., T. U. Kim, and S. M. Byun. 1993. Pullulan production from starch hydrolysate by Aureobasidium pullulans SH8646. J. Microbiol. Biotechnol. 3: 298-302
20 Seo, H. P., C. H. Chung, S. K. Kim, R. A. Gross, D. L. Kaplan, and J. W. Lee. 2004. Mass production of pullulan with optimized concentrations of carbon and nitrogen sources by Aureobasidium pullulans HP-2001 in a 100L bioreactor with the inner pressure. J. Microbiol. Biotechnol. 14: 237- 242
21 Barnett, C., A. Smith, B. Scanlon, and C. J. Israilides. 1999. Pullulan production by Aureobasidium pullulans growing on hydroysed potato starch waste. Carbohydr. Polym. 38: 203- 209   DOI   ScienceOn
22 Seviour, R. J. and B. Kristiansen. 1983. Effect of ammonium ion concentration of polysaccharide production by Aureobasidium pullulans in batch culture. Eur. J. Appl. Microbiol. Biotechnol. 17: 178-181   DOI
23 Pollock, T. J., L. Thorne, and R. W. Armentrout. 1992. Isolation of new Aureobasidium strains that produce high molecular-weight pullulan with reduced pigmentation. Appl. Environ. Microbiol. 58: 877-883
24 Schuster, R., E. Wenzig, and A. Mersmann. 1993. Production of the fungal exopolysaccharide pullulan by batch-wise and continuous fermentation. Appl. Microbiol. Biotechnol. 39: 155-158
25 Choi, D. B., S. H. Kang, Y. H. Song, K. H. Kwun, K. J. Jeong, and W. S. Cha. 2005. Exo-polysaccharide production in liquid culture of Pleurotus ferulae. J. Microbiol. Biotechnol. 15: 368-375   과학기술학회마을
26 Mohammad, F. H. A., S. M. Badr-Eldin, O. M. El-Tayeb, and O. A. Abdel-Rahman. 1995. Polysaccharide production by Aureobasidium pullulans III. The influence of initial sucrose concentration on batch kinetics. Biomass Bioenergy 8: 121-129   DOI   ScienceOn
27 Lacroix, C., A. Le Duy, G. Noel, and L. Choplin. 1985. Effect of pH on the batch fermentation of pullulan from sucrose medium. Biotechnol. Bioeng. 27: 202-207   DOI   ScienceOn
28 Lee, P. K., H. N. Chang, and B. H. Kim. 1989. Xanthan production by Xanthomonas campestris in continuous fermentation. Biotechnol. Lett. 11: 573-578   DOI
29 Shuler, M. L. and F. Kargi. 2002. Bioprocess Engineering Basic Concept, pp. 245-247. 2nd Ed. Prentice-Hall, Englewood Cliffs, New Jersey, U.S.A
30 Wiley, B. J., D. H. Ball, S. M. Arcidiacono, S. Sousa, J. M. Mayer, and D. L. Kaplan. 1993. Control of molecular weight distribution of the biopolymer pullulan produced by Aureobasidium pullulans. J. Environ. Polym. Degrad. 1: 3-9   DOI
31 Catley, B. J., A. Ramsay, and C. Servis. 1986. Observations on the structure of fungal extracellular-polysaccharide, pullulan. Carbohydr. Res. 153: 79-86   DOI   ScienceOn
32 Phillips, K. R., J. Pin, H. G. Lawford, B. Lavers, A. Kligerman, and G. R. Lawford. 1983. Production of curdlan type polysaccharide by Alcaligenes faecalis in batch and continuous culture. Can. J. Microbiol. 29: 1331-1338   DOI   ScienceOn
33 Aeschliman, A. and U. von Stockar. 1990. The effect of yeast extract supplementation on the production of lactic acid from whey permeate by Lactobacillus helveticus. Appl. Microbiol. Biotechnol. 32: 398-402   DOI
34 Deshpade, M. S., V. B. Rale, and J. N. Lynch. 1992. Aureobasidium pullulans in applied microbiology: A status report. Enz. Microb. Technol. 14: 514-527   DOI   ScienceOn
35 LeDuy, A. and J. M. Boa. 1982. Pullulan production from peat hydrolyzate. Can. J. Microbiol. 29: 143-146   DOI
36 Vijayendra, S. V. N., D. Bansal, M. S. Prasad, and K. Nand. 2001. Jagger: A novel substrate for pullulan production by Aureobasidium pullulans CFR-77. Process Biochem. 37: 359-364   DOI   ScienceOn
37 Southgate, D. A. T. 1976. Determination of Food Carbohydrates. Applied Science Publishers, London
38 Yean, S. 1974. Pullulan and its applications. Process Biochem. 9: 7-22
39 Hacking, A. J., I. W. F. Taylor, T. R. Jarman, and J. R. W. Govan. 1983. Alginate biosynthesis by Pseudomonas mendocina. J. Gen. Microbiol. 129: 3473-3480
40 Lee, J. C., J. W. Min, D. J. Park, K. H. Son, K. H. Yoon, H. R. Park, Y. S. Park, M. G. Kown, J. M. Lee, and C. J. Kim. 2005. Large-scale fermentation of the production of teicoplanin from a mutant of Actinoplanes teichomyceticus. J. Microbiol. Biotechnol. 15: 787-791   과학기술학회마을