Browse > Article

Antifungal Activity Against Colletotrichum spp. of Curcuminoids Isolated from Curcuma longa L. Rhizomes  

Cho Jun-Young (Biological Function Research Team, Korea Research Institute of Chemical Technology, Department of Agricultural Chemistry, College of Agricultural and Life Sciences, Chungnam National University)
Choi Gyung-Ja (Biological Function Research Team, Korea Research Institute of Chemical Technology)
Lee Seon-Woo (Faculty of Applied Biotechnology, College of Natural Resources and Life Science, Dong-A University)
Jang Kyoung-Soo (Biological Function Research Team, Korea Research Institute of Chemical Technology)
Lim He-Kyoung (Biological Function Research Team, Korea Research Institute of Chemical Technology)
Lim Chi-Hwan (Department of Agricultural Chemistry, College of Agricultural and Life Sciences, Chungnam National University)
Lee Sun-Og (Biological Function Research Team, Korea Research Institute of Chemical Technology)
Cho Kwang-Yun (Biological Function Research Team, Korea Research Institute of Chemical Technology)
Kim Jin-Cheol (Biological Function Research Team, Korea Research Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.2, 2006 , pp. 280-285 More about this Journal
Abstract
Methanol extract of the rhizomes of turmeric, Curcuma longa L., effectively controlled the development of red pepper anthracnose caused by Colletotrichum coccodes. In addition three antifungal substances were identified from the methanol extract of C. longa rhizomes as curcumin, demethoxycurcumin, and bisdemethoxycurcumin using mass and $^{1}H-NMR$ spectral analyses. The curcuminoids in a range $0.4-100\;{\mu}g/ml$ effectively inhibited the mycelial growth of three red pepper anthracnose pathogens, C. coccodes, C. gloeosporioides, and C. acutatum. The three curcuminoids inhibited mycelial growth of C. coccodes and C. gloeosporioides to an extent similar to the synthetic fungicide dithianon did, but the synthetic agent was a little more effective against C. acutatum. The curcuminoids also effectively inhibited spore germination of C. coccodes, and bisdemethoxycurcumin was the most active. Among the three curcuminoids, only demethoxycurcumin was effective in a greenhouse test in suppressing red pepper anthracnose caused by C. coccodes.
Keywords
Antifungal activity; Colletotrichum species; Curcuma longa; curcuminoids; red pepper anthracnose;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 17  (Related Records In Web of Science)
연도 인용수 순위
1 Chowdhury, H., S. Walia, and B. S. Saxena. 2000. Isolation, characterization and insect growth inhibitory activity of major turmeric constituents and their derivatives against Schistocerca gregaria (Forsk) and Dysdercus koenigii (Walk). Pest Manag. Sci. 56: 1086-1092   DOI   ScienceOn
2 Kelkhar, N. C. and B. S. Rao. 1934. Studies in Indian essential oils from rhizomes of Curcuma longa Linn. J. Indian Inst. Sci. 17A: 7-24
3 Kim, M.-K., G. J. Choi, and H.-S. Lee. 2003. Fungicidal property of Curcuma longa L. rhizome-derived curcumin against phytopathogenic fungi in a greenhouse. J. Agric. Food Chem. 51: 1578-1581   DOI   ScienceOn
4 Mazumber, A. 1995. Inhibition of human immunodeficiency virus type-1 integrase by curcumin. Biochem. Pharmacol. 49: 1165-1170   DOI   ScienceOn
5 Montaldo, A. 1972. Cultivo de raices y tuberculos tropicales, Instituto Interamericano de Ciencias Agricolas de la OEA, Lima, Peru, p. 257
6 Pedersen, U., P. B. Rasmussen, and S.-O. Lawesson. 1985. Synthesis of naturally occurring curcuminoids and related compounds. Liebigs Ann. Chem. 1557-1569
7 Park, K. S. and C. H. Kim. 1992. Identification, distribution, and etiological characteristics of anthracnose fungi of red red pepper in Korea. Kor. J. Plant Pathol. 8: 61-69
8 Hong, J. K. and B. K. Hwang. 1998. Influence of inoculum density, wetness duration, plant age, inoculation method, and cultivar resistance on infection of red pepper plants by Colletotrichum coccodes. Plant Dis. 82: 1079-1083   DOI   ScienceOn
9 Agrios, G. N. 1978. Plant Pathology, pp. 298-301. Academic Press, New York, U.S.A
10 Huang, M. T. 1998. Inhibitory effect of curcumin, chlorogenic, caffeic acid and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoyl phorbol-13-acetate. Cancer Res. 48: 5941-5946
11 Meazza, G., F. E. Dayan, and D. E. Wedge. 2003. Activity of quinones on Colletotrichum species. J. Agric. Food Chem. 51: 3824-3828   DOI   ScienceOn
12 Lee, C.-H. and H.-S. Lee. 2005. Antifungal property of dihydroxyanthraquinones against phytopathogenic fungi. J. Microbiol. Biotechnol. 15: 442-446   과학기술학회마을
13 Gamagae, S. U., D. Sivakumar, R. S. Wilson Wijeratnam, and R. L. C. Wijesundera. 2003. Use of sodium bicarbonate and Candida oleophila to control anthracnose in papaya during storage. Crop Prot. 22: 775-779   DOI   ScienceOn
14 Syu, W.-J., C.-C. Shen, M.-J. Don, J.-C. Ou, G.-H. Lee, and C.-M. Sun. 1998. Cytotoxicity of curcuminoids and some novel compounds from Curcuma zedoaria. J. Nat. Prod. 61: 1531-1534   DOI   ScienceOn
15 Cho, S.-J., S. K. Lee, B. J. Cha, Y. H. Kim, and K.-S. Shin. 2003. Detection and characterization of the Gloeosporium gloeosporioides growth inhibitory compound iturin A from Bacillus subtilis strain KS03. FEMS Microbiol. Lett. 223: 47-51   DOI   ScienceOn
16 Mathi, C. K. 1979. The pattern of rhizome yield and their accumulation of commercially important chemical constituents in turmeric during growth and development. Qual. Plant Plant Foods Hum. Nutr. 36: 215-219
17 Apisariyakul, A., N. Vanittanakom, and D. Buddhasukh. 1995. Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J. Ethnopharmacol. 49: 163-169   DOI   ScienceOn
18 Kim, D. S. H. L., S.-Y. Park, and J. Y. Kim. 2001. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from ${\beta}A$(1-42) insult. Neurosci. Lett. 303: 57-61   DOI   ScienceOn
19 Jeyalakshmi, C. and K. Seetharaman. 1998. Biological control of fruit rot and die-back of chili with plant products and antagonistic microorganisms. Plant Dis. Res. 13: 46-48
20 Gomes, D. C., L. V. Algegrio, M. E. De Lima, L. L. Leon, and C. A. Araujo. 2002. Synthetic derivatives of curcumin and their activity against Leishmania amazonensis. Arzneimittelforschung 52: 120-124
21 Kang, S. W., S. I. Hong, and S. W. Kim. 2005. Identification of Aspergillus strain with antifungal activity against Phytophthora species. J. Microbiol. Biotechnol. 15: 227- 233   과학기술학회마을
22 Ramprasad, C. and M. Sirsi. 1956. Studies on Indian medicinal plants: Curcuma longa Linn - in vitro antibacterial activity of curcumin and the essential oil. J. Sci. Res. Inst. 15: 239-242
23 Kuk, J. H., S. J. Ma, J. H. Moon, K. Y. Kim, S. H. Choi, and K. H. Park. 2002. Antibacterial and antifungal activities of a naphthoquinone derivative isolated from the fruits of Catalpa ovata G. $D_{ON}$. J. Microbiol. Biotechnol. 12: 858- 863
24 Almada-Ruiz, E., M. A. Martinez-Tellez, M. Hernandez- Alamos, S. Vallejo, E. Primo-Yufera, and I. Vargas-Arispuro. 2003. Fungicidal potential of methoxylated flavones from citrus for in vitro control of Colletotrichum gloeosporioides, causal agent of anthracnose disease in tropical fruits. Pest Manag. Sci. 59: 1245-1249   DOI   ScienceOn
25 Kim, W. G., E. K. Cho, and E. J. Lee. 1986. Two strains of Colletotrichum gloeosporioides Penz. causing anthracnose on red pepper fruits. Kor. J. Plant Pathol. 2: 107-113
26 Bautista-Banos, S., M. Hernandez-Lopez, E. Bosquez- Molina, and C. L. Wilson. 2003. Effects of chitosan and plant extracts on growth of Colletotrichum gloeosporioides, anthracnose levels and quality of papaya fruit. Crop Prot. 22: 1087-1092   DOI   ScienceOn