Browse > Article

Thermococcus onnurineus sp. nov., a Hyperthermophilic Archaeon Isolated from a Deep-Sea Hydrothermal Vent Area at the PACMANUS Field  

Bae, Seung-Seob (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Kim, Yun-Jae (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Yang, Sung-Hyun (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Lim, Jae-Kyu (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Jeon, Jeong-Ho (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Lee, Hyn-Sook (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Kang, Sung-Gyun (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Kim, Sang-Jin (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Lee, Jung-Hyun (Marine Biotechnology Center, Korea Ocean Research & Development Institute)
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.11, 2006 , pp. 1826-1831 More about this Journal
Abstract
A novel hyperthermophilic, anaerobic, heterotrophic archaeon, designated strain $NA1^T$, was isolated from a deep-sea hydrothermal vent area (depth, 1,650 m) within the Papua New Guinea-Australia-Canada-Manus (PACMANUS) field. Cells of this strain were motile by means of polar flagella, coccoid-shaped with a diameter of approximately $0.5-1.0{\mu}m$, and occurred as single cells. Optimal temperature, pH, and NaCl concentration for growth were $80^{\circ}C$, 8.5, and 3.5%, respectively. The new isolate was an obligate heterotroph that utilized yeast extract, beef extract, tryptone, peptone, casein, and starch as carbon and energy sources. Elemental sulfur was required for growth and was reduced to hydrogen sulfide. The G+C content of the genomic DNA was 52.0 mol%. Phylogenetic analysis of the 16S rRNA gene indicated that strain $NA1^T$ belongs to the genus Thermococcus, and the organism is most closely related to T. gorgonarius, T. peptonophilus, and T. celer; however, no significant homology was observed among species by DNA-DNA hybridization. Strain $NA1^T$ therefore represents a novel species for which the name Thermococcus onnurineus sp. novo is proposed. The type strain is $NA1^T$ (=KCTC 10859, =JCM 13517).
Keywords
Archaea; deep-sea hydrothermal vent; hyperthermophile; PACMANUS field; Thermococcus sp.;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 22  (Related Records In Web of Science)
연도 인용수 순위
1 Atomi, H., T. Fukui, T. Kanai, M. Morikawa, and T. Imanaka. 2004. Description of Thermococcus kodakarensis sp. nov., a well studied hyperthermophilic archeaon previously reported as Pyrococcus sp. KOD1. Archaea 1: 263-267   DOI   ScienceOn
2 Choi, J. J. and S.-T. Kwon. 2004. Cloning, expression, and characterization of DNA polymerase from hyperthermophilic bacterium Aquifex pyrophilus. J. Microbiol. Biotechnol. 14: 1022-1030
3 Delong, E. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685-5689
4 Godfroy, A., F. Lesongeur, G. Raguenes, J. Quérellou, E. Antoine, J.-R. Meunier, J. Guezennec, and G. Barbier. 1997. Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 47: 622-626   DOI   ScienceOn
5 Holden, J. F., K. Takai, M. Summit, S. Bolton, J. Zyskowski, and J. Baross. 2001. Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the Northeastern Pacific Ocean. FEMS Microbiol. Ecol. 36: 51-60   DOI
6 Mandel, M., L. Igambi, J. Bergendahl, M. L. Dodson, and E. Scheltgen Jr. 1970. Correlation of melting temperature and cesium chloride buoyant density of bacterial deoxyribonucleic acid. J. Bacteriol. 101: 333-338   DOI
7 Miroshnichenko, M. L., H. Hippe, E. Stackebrandt, N. A. Kostrikina, A. M. Lysenko, N. A. Chernyh, C. Jeanthon, T. N. Nazina, S. S. Belyaev, and E. A. Bonch-Osmolovskaya. 2001. Isolation and characterization of Thermococcus sibiricus sp. nov., from a Western Siberia high-temperature oil reservoir. Extremophiles 5: 85-91   DOI
8 Shin, H.-J., S.-K. Lee, J. J. Choi, S. H. Koh, J.-H. Lee, S.-J. Kim, and S.-T. Kwon. 2005. Cloning, expression, and characterization of a family B-type DNA polymerase from the hyperthermophilic crenarchaeon Pyrobaculum arsenaticum and its application to PCR. J. Microbiol. Biotechnol. 15: 1359-1367   과학기술학회마을
9 Stetter, K. O. 1999. Extremophiles and their adaptation to hot environments. FEBS Lett. 452: 22-25   DOI   ScienceOn
10 Zillig, W. and A.-L. Reysenbach. 2001. Class IV. Thermococci class. nov., pp. 342-346 In D. R. Boone and R. W. Castenholz (eds.). Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1. Springer, New York
11 Porter, K. G. and Y. S. Feig. 1980. The use of DAPI for identifying and counting microflora. Limnol. Oceanogr. 25: 943-948   DOI   ScienceOn
12 De Ley, J., H. Cattoir, and A. Reynaerts. 1970. The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12: 133-142   DOI   ScienceOn
13 Bae, S. S., J.-H. Lee, and S.-J. Kim. 2005. Bacillus alveayuensis sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough. Int. J. Syst. Evol. Microbiol. 55: 1211-1215   DOI   ScienceOn
14 Miroshnichenko, M. L., G. M. Gongadze, F. A. Rainey, A. S. Kostyukova, A. M. Lysenko, N. A. Chernyh, and E. A. Bonch-Osmolovskaya. 1998. Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: Heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int. J. Syst. Bacteriol. 48: 23-29   DOI   ScienceOn
15 Takai, K., T. Komatsu, F. Inagaki, and K. Horikoshi. 2001. Distribution of archaea in a black smoker chimney structure. Appl. Environ. Microbiol. 67: 3618-3629   DOI   ScienceOn
16 Zillig, W., I. Holz, D. Janekovic, W. Schafer, and W. D. Reiter. 1983. The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4: 88-94   DOI
17 Bazylinski, D. A., C. O. Wirsen, and H. W. Jannasch. 1989. Microbial utilization of naturally-occurring hydrocarbon at the Guaymas Basin hydrothermal vent site. Appl. Environ. Microbiol. 55: 2832-2836
18 Fitch, W. M. 1972. Toward defining the course of evolution: Minimum change for a specific tree topology. Syst. Zool. 20: 406-416   DOI   ScienceOn
19 Takai, K., A. Sugai, T. Itoch, and K. Horikoshi. 2000. Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int. J. Syst. Evol. Microbiol. 50: 489-500   DOI
20 Marmur, J. and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109-118   DOI
21 Schonheit, P. and T. Schafer. 1995. Metabolism of hyperthermophiles. World J. Microbiol. Biotechnol. 11: 26-57   DOI   ScienceOn
22 Balch, W. E. and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-Mercaptoethane-sulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781-791
23 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425
24 Fitch, W. M. and E. Margoliash. 1967. Construction of phylogenetic trees. Science 155: 279-284   DOI
25 Ronimus, R. S., A.-L. Reysenbach, D. R. Musgrave, and H. W. Morgan. 1997. The phylogenetic position of the Thermococcus isolate AN1 based on 16S rRNA gene sequence analysis: A proposal that AN1 represents a new species, Thermococcus zilligii sp. nov. Arch. Microbiol. 168: 245-248   DOI
26 Sohn, J. H., K. Y. Kwon, J.-H. Kang, H. B. Jung, and S.-J. Kim. 2004. Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int. J. Syst. Evol. Microbiol. 54: 1483-1487   DOI   ScienceOn
27 Felsenstein, J. 1993. PHYLIP (Phylogeny Inference Package), version 3.5c. Department of Genetics, University of Washington, Seattle, WA, U.S.A
28 Fiala, G. and K. Stetter. 1986. Pyrococcus furiosus sp. nov. represents a new genus of marine heterotrophic archaebacteria growing optimally at $100^{\circ}C$. Arch. Microbiol. 145: 338-349
29 Jukes, T. H. and C. R. Cantor. 1969. Evolution of protein molecules, pp. 21-32. In H. N. Munro. (ed.). Mammalian Protein Metabolism, Vol. 3. Academic Press, New York
30 Stackebrandt, E. and B. M. Goebel. 1994. Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Bacteriol. 44: 846-849   DOI   ScienceOn
31 Wayne, L. G., D. J. Brenner, R. R. Colwell, P. A. D. Grimont, P. Kandler, M. I. Krichevsky, L. H. Moore, W. E. C. Moore, R. G. E. Murray, E. Stackebrandt, M. P. Starr, and H. G. Trper. 1987. Report of the Ad Hoc Committee on reconciliation of approaches of bacterial systematics. Int. J. Syst. Bacteriol. 37: 463-464   DOI
32 Lee, S.-H., H. R. Oh, J.-H. Lee, S.-H. Kim, and J.-C. Cho. 2004. Cold-seep sediment harbors phylogenetically diverse uncultured bacteria. J. Microbiol. Biotechnol. 14: 906-913
33 Gonzalez, J. M., C. Kato, and K. Horikoshi. 1995. Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch. Microbiol. 164: 159-164   DOI