Browse > Article

Development of Serum-Free Media for Primary Culture of Human Articular Chondrocytes  

CHOI YONG SOO (Department of Biological Engineering, Inha University)
LIM SANG MIN (Department of Biological Engineering, Inha University)
LEE CHANG WOO (Good Shepherd Hospital)
KIM DONG-IL (Department of Biological Engineering, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1299-1303 More about this Journal
Abstract
Human articular chondrocytes (HAC) were cultivated as a monolayer in a serum-free medium for primary culture (SFM-P). An optimized SFM-P provides $95\%$ proliferation rate of that obtainable from primary and secondary chondrocyte cultures grown in a control medium with serum. The gradual decrease in the amounts of synthesized glycosaminoglycan and type II collagen was improved by coating the culture dishes with type IV collagen and fibronectin. A significant improvement in the expression of type II collagen and aggrecan mRNA could be achieved. In addition, the monolayer cultures showed better synthesis of the extracellular matrices than alginate-bead cultures in SFM-P.
Keywords
Chondrocytes; primary culture; serum-free medium;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Adolphe M., B. Froger, X. Ronot, M. T. Corvol, and N. Forest. 1984. Cell multiplication and type II collagen production by rabbit articular chondrocytes cultivated in a defined medium. Exp. Cell Res. 155: 527-536   DOI   ScienceOn
2 Kim, B.-S., S. I. Jeong, S.-W. Cho, J. Nikolovski, D. J. Mooney, S. H. Lee, J. Jeon, T. W. Kim, S. H. Lim, Y. S. Hong, C. Y. Choi, Y. M. Lee, S. H. Kim, and Y. H. Kim. 2004. Tissue engineering of smooth muscle under a mechanically dynamic condition. J. Microbiol. Biotechnol. 13: 841-845
3 Kwon, M. S., T. Dojima, and E. Y. Park. 2003. Comparative characterization of growth and recombinant protein production among three insect cell lines with four kinds of serum free media. Biotechnol. Bioprocess Eng. 8: 142-146   DOI   ScienceOn
4 Brittberg, M., T. Tallheden, E. Sjögren-Jansson, A. Lindahl, and L. Peterson. 2001. Autologous chondrocytes used for articular cartilage repair. Clin. Orthop. Rel. Res. 391S: S337-S348
5 Benya, P. D. and J. D. Shaffer. 1982. Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30: 215-224   DOI   ScienceOn
6 Kim, N., Y. Lee, H. Kim, J. Choi, J. Kim, K.-H. Chang, J. H. Kim, and H.-J. Kim. 2004. Enhancement of erythropoietin production from Chinese hamster ovary (CHO) cells by introduction of the urea cycle enzymes, carbamoyl phosphate synthetase I and ornithine transcarbamylase. J. Microbiol. Biotechnol. 14: 844-851
7 Huh, Y. H., S. H. Kim, S. J. Kim, and J. S. Chun. 2003. Differentiation status-dependent regulation of cyclooxygenase- 2 expression and prostaglandin $E_2$ production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J. Biol. Chem. 278: 9691-9697   DOI   ScienceOn
8 Ribault, D., A. M. Khatib, A. Panasyuk, A. Barbara, Z. Bouizar, and R. D. Mitrovic. 1997. Mitogenic and metabolic actions of epidermal growth factor on rat articular chondrocytes: Modulation by fetal calf serum, transforming growth factor-b, and tyrphostin. Arch. Biochem. Biophys. 337: 149-158   DOI   PUBMED   ScienceOn
9 Yashveer, S. 2003. Photosynthetic activity, and lipid and hydrocarbon production by alginate-immobilized cells of Botryococcus in relation to growth phase. J. Microbiol. Biotechnol. 13: 687-691
10 Huckle, J., G. Dootson, N. Medcalf, S. McTaggart, E. Wright, A. Carter, R. Schreiber, B. Kirby, N. Dunkelman, S. Stevenson, S. Riley, T. Davisson, and A. Ratcliffe. 2003. Differentiated chondrocytes for cartilage tissue engineering, pp. 175-186. In G. Bock and J. Goode (eds.), Tissue Engineering of Cartilage and Bone. John Wiley & Sons, West Sussex
11 Grigolo, B., L. Roseti, S. Neri, P. Gobbi, P. Jensen, E. O. Major, and A. Facchini. 2002. Human articular chondrocytes immortalized by HPV-16 E6 and E7 genes: Maintenance of differentiated phenotype under defined culture conditions. Osteoarthritis Cartilage 10: 879-889   DOI   ScienceOn
12 Choi, Y. C., G. M. Morris, F. S. Lee, and L. Sokoloff. 1980. The effect of serum on monolayer cell culture of mammalian articular chondrocytes. Connect. Tissue Res. 7: 105-112   DOI   ScienceOn
13 Lu, L., X. Zhu, R. G. Valenzuela, B. L. Currier, and M. J. Yaszemski. 2001. Biodegradable polymer scaffolds for cartilage tissue engineering. Clin. Orthop. Rel. Res. 391S: S251-S270
14 Kim, D.-I., H.-J. Park, H.-S. Eo, S.-W. Suh, J.-H. Hong, M.-J. Lee, J.-S. Kim, I.-S. Jang, and B.-S. Kim. 2004. Comparative study of seeding and culture methods to vascular smooth muscle cells on biodegradable scaffold. J. Microbiol. Biotechnol. 14: 707-714
15 Prins, A. P. A, J. M. Lipman, and L. Sokoloff. 1982. Effect of purified growth factors on rabbit articular chondrocytes in monolayer culture. Arthritis Rheum. 25: 1217-1227   DOI   ScienceOn
16 Kim, B. S., S. P. Yoo, and H. W. Park. 2004. Tissue engineering of cartilage with chondroctyes cultured in a chemically-defined, serum-free medium. Biotechnol. Lett. 26: 709-712   DOI   ScienceOn
17 Kim, N. S., K. H. Chang, B. S. Chung, S. H. Kim, J. H. Kim, and G. M. Lee. 2003. Characterization of humanized antibody produced by apoptosis-resistant CHO cells under sodium butyrate-induced condition. J. Microbiol. Biotechnol. 13: 926-936
18 Biggers, J. D., R. B. L. Gwatkin, and S. Heyner. 1961. Growth of embryonic avian and mammalian tibiae on a relatively simple chemically defined medium. Exp. Cell Res. 25: 41-58   DOI   ScienceOn
19 Jakob, M., O. Demarteau, D. Schafer, B. Hintermann, W. Dick, M. Heberer, and I. Martin. 2001. Specific growth factors during the expansion and redifferentiation of adult human articular chondrocytes enhance chondrogenesis and cartilaginous tissue formation in vitro. J. Cell Biochem. 81: 368-377   DOI   ScienceOn