Browse > Article

Styrene Degradation in a Polyurethane Biofilter Inoculated with Pseudomonas sp. IS-3  

KIM JAISOO (Environmental Science and Engineering, Ewha Womans University)
RYU HEE WOOK (Department of Chemical and Environmental Engineering, Soongsil University)
JUNG DONG JIN (Research Institute of Biological and Environmental Technology, Biosanit Co.,)
LEE TAE HO (Research Institute of Biological and Environmental Technology, Biosanit Co.,)
CHO KYUNG-SUK (Environmental Science and Engineering, Ewha Womans University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1207-1213 More about this Journal
Abstract
In a search for bacteria capable of degrading styrene better than previously isolated strains, bacterium IS-3 was isolated from activated sludge and found to be most closely related to Pseudomonas sp. Styrene degradation by this strain was tested in liquid cultures and polyurethane-packed biofilters. In liquid cultures, the rate of styrene degradation by this bacterium increased from 24.93 to $76.53\;{\mu}mol\;g^{-1}\;DCW\;H^{-1}$ for an initial mass range from 8.7 to $34.8{\mu}mol$. The maximum styrene elimination capacity was 580-635 $g/m^{3}\cdot$h at a space velocity (SV) of 50-200/h. The critical elimination capacities guaranteeing $95\%$ removal of the input styrene were determined to be 635, 170, and 38 $g/m^{3}\cdot$h, respectively, at SVs of 50, 100, and 200/h. Kinetic analysis revealed that the maximum styrene elimination velocity ($V_{m}$) for this biofilter was 1,000 g/m$\cdot$h, and the saturation constant ($K_{m}$) was 454 ppmv. Together, these results suggest that a polyurethane biofilter containing Pseudomonas sp. IS-3 could have potential practical applications for the effective removal of styrene gas.
Keywords
Styrene; Pseudomonas sp.; biofilter; polyurethane; elimination capacity; degrada;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
1 Elomari, M., L. Coroler, S. Verhille, D. Izard, and H. Leclerc. 1997. Pseudomonas monteilii sp. nov., isolated from clinical specimens. Int. J. Syst. Bacteriol. 47: 846-852   DOI   ScienceOn
2 Fielder, R. J. and R. Lowing. 1981. Toxicity Review 1: Styrene. Health and Safety Executive, London, U.K
3 Lee, B. H., J. H. Lee, S. I. Ryu, and Y. J. Yoo. 2001. Predicting a breakthrough curve of a volatile organic compound (VOC) with estimation of the surface diffusion coefficient and surface pore flux ratio by modeling and column test. Environ. Eng. Res. 6: 147-153
4 Ottengraf, S. P. P. 1986. Exhaust gas purification, pp. 425- 452. In H. J. Rehm and G. Reed (eds.), Biotechnology: A Comprehensive Treatise, vol 8. VCH, Verlagsgesellschaft, Weinheim Publishers, Weinheim, Germany
5 Weigner, P., J. Paca, P. Loskot, B. Koutsky, and M. Sobotka. 2001. The start-up period degrading biofilters. Folia Microbiol. 46: 211-216   DOI   ScienceOn
6 Son, H. K., B. A. Striebig, and R. W. Regan. 2004. A modified thermo-model for VOC treating biofilter. Environ. Eng. Res. 9: 288-298   DOI
7 Weigner, P., J. Paca, P. Loskot, B. Koutsky, and M. Sobotka. 2001. The start-up period degrading biofilters. Folia Microbiol. 46: 211-216   DOI   ScienceOn
8 Cho, K. S. M. Hirai, and M. Shoda. 1992. Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. J. Ferment. Bioeng. 71: 46-50
9 Jang, J. H., M. Hirai, and M. Shoda. 2004. Styrene degradation by Pseudomonas sp. SR-5 in biofilters with organic and inorganic packing materials. Appl. Microbiol. Biotechnol. in press
10 O'Leary, N. D., K. E. O'Connor, and A. D. W. Dobson. 2002. Biochemistry, genetics and physiology of microbial styrene degradation. FEMS Microbiol. Rev. 26: 403-417   DOI
11 Lu, C., M. R. Lin, and J. Lin. 2001. Removal of styrene vapor form waste gases by a trickle-bed air biofilter. J. Hazard. Mater. B82: 233-245
12 Reittu, A. M., A. von Wright, P. J. Martikainen, and M. L. Suihko. 1997. Bacterial degradation of styrene in waste gases using a peat filter. Appl. Microbiol. Biotechnol. 48: 738-744   DOI   ScienceOn
13 Jorio, H., L. Bibeau, and M. Heitz. 2000. Biofiltration of air contaminated by styrene: Effect of nitrogen supply, gas flow rate, and inlet concentration. Environ. Sci. Technol. 34: 1764-1771   DOI   ScienceOn
14 Lee, E. Y., Y. S. Jun, K. S. Cho, and H. W. Ryu. 2002. Degradation characteristics of toluene, benzene, ethylbenzene, and xylene by Stenotrophomonas maltophilia T3-c. J. Air Wast. Manage. Assoc. 52: 400-406   DOI   ScienceOn
15 Lorenzo P., S. Alonso, A. Velasco, E. Diaz, J. L. Garcia, and J. Perera. 2003. Design of catabolic cassettes for styrene biodegradation. Anton. Leeuw. Int. J. G. 84: 17-24   DOI   ScienceOn
16 Cho, K. S., M. Hirai, and M. Shoda. 1991. Degradation characteristics of hydrogen sulfide, methanethiol, dimethyl sulfide, and dimethyl disulfide by Thiobacillus thioparus DW44 isolated peat biofilter. J. Ferment. Bioeng. 71: 384-389   DOI   ScienceOn
17 Cox, H. H. J., J. H. M. Houtman, H. J. Doddema, and W. Harder. 1993. Enrichment of fungi and degradation of styrene in biofilters. Biotechnol. Lett./Sci. Technol. Lett. 15: 737-742   DOI   ScienceOn
18 Howard, P. H. 1990. Handbook of Environmental Fate and Exposure for Organic Chemicals. Volumes 1-4. Lewis Publishers, Chelsea, Michigan, U.S.A
19 Devinny, J. S., M. A. Deshusses, and T. S. Webster. 1999. Biofiltration for Air Pollution Control. Lewis Publishers, NY, U.S.A
20 Lee. E. Y., K. S. Cho, H. D. Han, and H. W. Ryu. 2002. Hydrogen sulfide effects on ammonia removal by a biofilter seeded with earthworm casts. J. Environ. Qual. 31: 1782- 1788   DOI   ScienceOn
21 Moe, W. M. and R. L. Irvine. 2001. Polyurethane foam based biofilter media for toluene removal. Water Sci. Technol. 43: 35-42
22 Leoni L., P. Ascenzi, and A. Bocedi. 2003. Styrene-catabolism regulation in Pseudomonas fluorescens ST: Phosphorylation of StyR induces dimerization and cooperative DNA-binding. Biochem. Biophs. Res. Commun. 303: 926-931   DOI   ScienceOn
23 Ministry of Environment, 2004. Examination Report for Emission Amount of Chemical Materials in 2002, Korea
24 Ihm, S. K. 2000. Design of environmental catalysts for VOC removal. Environ. Eng. Res. 5: 213-222
25 Okamoto, K., M. Izawa, and H. Yanase. 2003. Isolation and application of a styrene-degrading strain of Pseudomonas putida to biofiltration. J. Biosci. Bioeng. 95: 633-636   DOI
26 Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine 1- carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90
27 IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. 2002. Some Traditional Herbal Medicines, Some Mycotoxins, Naphthalene and Styrene. p. 590. Volume 82, France
28 Moe, W. M. and R. L. Irvine. 2000. Polyurethane foam medium for biofiltration. II: Operation and performance. J. Environ. Eng. 126: 826-832   DOI   ScienceOn
29 An, Y. J., Y. H. Joo, I. Y. Hong, H. W. Ryu, and K. S. Cho. 2004. Microbial characterization of toluene-degrading denitrifying consortia obtained from terrestrial and marine ecosystems. Appl. Microbiol. Biotechnol. 65: 611-619
30 Cox, H. H. J., R. E. Moerman, S. van Baalen, W. N. A. van Heiningen, H. J. Doddema, and W. Harder. 1997. Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol. Bioeng. 53: 259-266   DOI   ScienceOn
31 Zilli, M., E. Palazzi, L. Sene, A. Converti, and M. D. Borghi. 2001. Toluene and styrene removal from air in biofilters. Process Biochem. 37: 423-429   DOI   ScienceOn