Browse > Article

Cloning and Characterization of Cyclohexanol Dehydrogenase Gene from Rhodococcus sp. TK6  

CHOI JUN-HO (Division of Applied Biology and Chemistry, Kyungpook National University)
KIM TAE-KANG (Division of Applied Biology and Chemistry, Kyungpook National University)
KIM YOUNG-MOG (Institute of Agricultural Science & Technology, Kyungpook National University)
KIM WON-CHAN (Division of Applied Biology and Chemistry, Kyungpook National University)
JOO GIL-JAE (Institute of Agricultural Science & Technology, Kyungpook National University)
LEE KYEONG-YEOLL (Division of Applied Biology and Chemistry, Kyungpook National University)
RHEE IN-KOO (Division of Applied Biology and Chemistry, Kyungpook National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.6, 2005 , pp. 1189-1196 More about this Journal
Abstract
The cyclohexanol dehydrogenase (ChnA), produced by Rhodococcus sp. TK6, which is capable of growth on cyclohexanol as the sole carbon source, has been previously purified and characterized. However, the current study cloned the complete gene (chnA) for ChnA and its flanking regions using a combination of a polymerase chain reaction (PCR) based on the N-terminal amino acid sequence of the purified ChnA and plaque hybridization from a phage library of Rhodococcus sp. TK6. A sequence analysis of the 5,965-bp DNA fragment revealed five potential open reading frames (ORFs) designated as partial pte (phosphotriesterase), acs (acyl-CoA synthetase), scd (short chain dehydrogenase), stp (sugar transporter), and chnA (cyclohexanol dehydrogenase), respectively. The deduced amino acid sequence of the chnA gene exhibited a similarity of up to $53\%$ with members of the short-chain dehydrogenase/reductase (SDR) family. The chnA gene was expressed using the pET21 a(+) system in Escherichia coli. The activity of the expressed ChnA was then confirmed (13.6 U/mg of protein) and its properties investigated.
Keywords
Cyclohexanol dehydrogenase; chnA gene; Rhodococcus sp. TK6;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
1 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI   ScienceOn
2 Donoghue, N. A. and P. W. Trudgill. 1975. The metabolism of cyclohexanol by Acinetobacter NCIB 9871. Eur. J. Biochem. 60: 1-7   DOI   ScienceOn
3 Jin, H. H., N. S. Han, D. H. Kweon, Y. C. Park, and J. H. Seo. 2001. Effects of environmental factors of in vivo folding of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli. J. Microbiol. Biotechnol. 11: 92-96
4 Kim, Y. M., K. Park, J. H. Choi, J. E. Kim, and I. K. Rhee. 2004. Biotransformation of the fungicide chlorothalonil by bacterial glutathione S-transferase. J. Microbiol. Biotechnol. 14: 938-943
5 Kim, T. K. and I. K. Rhee. 1999. Cyclohexanol dehydrogenase isozymes produced by Rhodococcus sp. TK6. Kor. J. Appl. Microbiol. Biotechnol. 27: 124-128
6 Kim, T. K., J. H. Choi, and I. K. Rhee. 2002. Purification and characterization of a cyclohexanol dehydrogenase from Rhodococcus sp. TK6. J. Microbiol. Biotechnol. 12: 39-45
7 Kwon, H. H., E. Y. Lee, K. S. Cho, and H. W. Ryu. 2003. Benzene biodegradation using the polyurethane biofilter immobilized with Stenotrophomonas maltophilla T3-c. J. Microbiol. Biotechnol. 13: 70-76
8 Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular Cloning: A Laboratory Manual, 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., U.S.A
9 Schlieker, C., B. Bukau, and A. Mogk. 2002. Prevention and reversion of protein aggregation by molecular chaperones in E. coli cytosol: Implications for their applicability in biotechnology. J. Biotechnol. 96: 13-21   DOI   ScienceOn
10 Shin, C. S., M. S. Hong, H. C. Shin, and J. W. Lee. 2001. High-level production of recombinant human IFN-${\alpha}2a$ with co-expression of $tRNA^{Arg(AGG/AGA)}$ in high-cell-density cultures of Escherichia coli. Biotechnol. Bioprocess. Eng. 6: 301-305   DOI   ScienceOn
11 Stirling, L. A. and J. J. Perry. 1980. Purification and properties of a nicotinamide adenine dinucleotide-linked cyclohexanol dehydrogenase from a Nocardia species. Curr. Microbiol. 4: 37-40   DOI
12 Tanaka, H., H. Obata, T. Tokuyama, T. Ueno, F. Yoshizako, and A. Nishmura. 1977. Metabolism of cyclohexanol by Pseudomonas species. Hakkokogaku Kaishi 55: 62-67
13 Choi, K. K., C. H. Park, S. Y. Kim, W. S. Lyoo, S. H. Lee, and J. W. Lee. 2004. Polyvinyl alcohol degradation by Microbacterium barkeri KCCM 10507 and Paenibacillus amylolyticus KCCM 10508 in dyeing wastewater. J. Microbiol. Biotechnol. 14: 1009-1013
14 Hopwood, D. A., M. J. Bibb, K. F. Chater, T. Kieser, C. J. Bruton, H. M. Kieser, D. J. Lydiate, C. P. Smith, and H. Schrempf. 1985. Genetic Manipulation of Streptomyces - A Laboratory Manual. The John Innes Foundation, Norwich, England
15 Whyte, L. G., T. H. M. Smits, D. Labbe, B. Witholt, C. W. Greer, and J. B. van Beilen. 2002. Cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus spp. strains Q15 and 16531. Appl. Environ. Microbiol. 68: 5933-5942   DOI   ScienceOn
16 Brzostowicz, P. C., D. M. Walters, S. M. Thomas, V. Nagarajan, and P. E. Rouviere. 2003. mRNA differential display in a microbial enrichment culture: Simultaneous identification of three cyclohexanone monooxygenases from three species. Appl. Envir. Microbiol. 69: 334-342   DOI   ScienceOn
17 Brzostowicz, P. C., K. L. Gibson, S. M. Thomas, M. S. Blasko, and P. E. Rouviere. 2000. Simultaneous identification of two cyclohexanone oxidation genes from an environmental Brevibacterium isolate using mRNA differential display. J. Bacteriol. 182: 4241-4248   DOI   ScienceOn
18 Vieira, J. and J. Messing. 1987. Production of singlestranded plasmid DNA. Methods Enzymol. 153: 3
19 Cheng, Q., S. M. Thomas, K. Kostichka, J. R. Valentine, and V. Nagarajan. 2000. Genetic analysis of a gene cluster for cyclohexanol oxidation in Acinetobacter sp. strain SE19 by in vitro transposition. J. Bacteriol. 182: 4744-4751   DOI   ScienceOn
20 Park, H. D., G. J. Joo, and I. K. Rhee. 1997. Overproduction of Escherichia coli D-xylose isomerase using ${\lambda}P_L$ promoter. J. Microbiol. Biotechnol. 7: 8-12
21 Jornvall, H., B. Persson, M. Krook, S. Atrian, R. Gonzalez-Duarte, J. Jeffery, and D. Ghosh. 1995. Shortchain dehydrogenases/reductases (SDR). Biochemistry 34: 6003-6013   DOI   PUBMED   ScienceOn
22 Iwaki, H., Y. Hasegawa, M. Teraoka, T. Tokuyama, H. Bergeron, and P. C. K. Lau. 1999. Identification of a transcriptional activator (ChnR) and a 6-oxohexanoate dehydrogenase (ChnE) in the cyclohexanol catabolic pathway in Acinetobacter sp. strain NCIMB 9871 and localization of the genes that encode them. Appl. Environ. Microbiol. 65: 5158-5162
23 Park, M. K., K. H. Liu, Y. H. Lim, Y. H. Lee, H. G. Hur, and J. H. Kim. 2003. Biotransformation of a fungicide ethaboxam by soil fungus Cunninghamella elegans. J. Microbiol. Biotechnol. 13: 43-47
24 Van Beilen, J. B., F. Mourlane, M. A. Seeger, J. L. Z. Kovac, T. H. Smits, U. Fritsche, and B. Witholt. 2003. Cloning of Baeyer-Villiger monooxygenases from Comamonas, Xanthobacter and Rhodococcus using polymerase chain reaction with highly degenerate primers. Environ. Microbiol. 5: 174-182   DOI   ScienceOn
25 Sanger, F. S., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain terminating inhibitors. Proc. Natl. Acad. Sci. USA 74: 5463-5467
26 Neidle, E. L., C. Hartnett, N. L. Ornston, A. Bairoch, M. Rekik, and S. Harayama. 1992. Cis-diol dehydrogenases encoded by the TOL pWW0 plasmid xylL gene and the Acinetobacter calcoaceticus chromosomal benD gene are members of the short-chain alcohol dehydrogenase superfamily. Eur. J. Biochem. 204: 113-120   DOI   ScienceOn
27 Thomas, J. G. and F. Baneyx. 1997. Divergent effects of chaperone overexpression and ethanol supplementation on inclusion body formation in recombinant Escherichia coli. Protein Expr. Purif. 11: 289-296   DOI   ScienceOn
28 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   PUBMED   ScienceOn
29 Brzostowicz, P. C., M. S. Blasko, and P. E. Rouviere. 2002. Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU. Appl. Microbiol. Biotechnol. 58: 781-789   DOI   ScienceOn
30 Hanahan, D. 1983. Studies on transformation of Escherichia coli with plasmid. J. Mol. Biol. 166: 557-580   DOI   PUBMED
31 Trower, M. K., M. Buckland, R. Higgins, and M. Griffin. 1985. Isolation and characterization of cyclohexane-metabolizing Xanthobacter sp. Appl. Environ. Microbiol. 49: 1282-1289
32 Persson, B., M. Krook, and H. Jornvall. 1991. Characteristics of short-chain alcohol dehydrogenases and related enzymes. Eur. J. Biochem. 200: 537-543   DOI   ScienceOn
33 Kim, T. K. and I. K. Rhee. 1999. Isolation and characterization of cyclohexanol utilizing bacteria. Kor. J. Appl. Microbiol. Biotechnol. 27: 107-112