Browse > Article

Nature of a Root-Associated Paenibacillus polymyxa from Field-Grown Winter Barley in Korea  

RYU CHOONG-MIN (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University, Laboratory of Microbial Genomics, Korea Research Institute of Bioscience & Biotechnology)
KIM JINWOO (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University)
CHOI OKHEE (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University)
PARK SOO-YOUNG (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience & Biotechnology)
PARK SEUNG-HWAN (Laboratory of Microbial Genomics, Korea Research Institute of Bioscience & Biotechnology)
PARK CHANG-SEUK (Department of Applied Biology and Environmental Science, College of Agriculture and Life Sciences, Gyeongsang National University)
Publication Information
Journal of Microbiology and Biotechnology / v.15, no.5, 2005 , pp. 984-991 More about this Journal
Abstract
Soil or seed applications of plant growth-promoting rhizobacteria (PGPR) have been used to enhance growth of several crops as well as to suppress the growth of plant pathogens. In this study, we selected a PGPR strain, Paenibacillus polymyxa strain E681, out of 3,197 heat-stable bacterial isolates from winter wheat and barley roots. Strain E681 inhibited growth of a broad spectrum plant pathogenic fungi in vitro, and treatment of cucumber seed with E681 reduced incidence of damping-off disease caused by Pythium ultimum, Rhizoctonia solani, or Fusarium oxysporum. When inoculated onto seeds as vegetative cells or as endospores, E681 colonized whole cucumber root systems and root tips. Different temperatures such as $20^{\circ}C\;and\;30^{\circ}C$ did not affect root colonization by strain E681. This colonization was associated with a consistent increase in foliar growth of cucumber in the greenhouse. These results indicate that strain E681 is a promising PGPR strain for application to agricultural systems, particularly during the winter season.
Keywords
Plant growth-promoting rhizobacteria; Paenibacillus polymyxa; root colonization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 21  (Related Records In Web of Science)
연도 인용수 순위
1 Jacobsen, B. J., N. K. Zidack, and B. J. Larson. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology 94: 1272-1275   DOI   ScienceOn
2 Nakashimada, Y, B. Marwoto, T. Kashiwamura, T. Kakizono, and N. Nishiol. 2000. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. J. Biosci. Bioeng. 90: 661-664   DOI   ScienceOn
3 Silva, K. R. A. D., J. Falcao Salles, L. Seldin, and J. D. van Elsas. 2003. Application of a novel Paenihacillus-specific PCR-DGGE method and sequence analysis to assess the diversity of Paenibacillus spp. in the maize rhizosphere J. Microbiol. Methods 54: 213-231   DOI   ScienceOn
4 Schaad, N. W. (ed.). 1996. Laboratory Guide for Identification of Plant Pathogenic Bacteria. Americain Phytopathology Society, St. Paul. U.S.A
5 Van Loon, L. C., P. A. H. M. Bakker, and C. M. J. Pierterse. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopath. 36: 453-483   DOI   ScienceOn
6 Weller, D. M. 1988. Biological control of soilborne plant pathogens in the rhizosphere with bacteria. Annu. Rev. Phytopathol. 26: 379-407   DOI   ScienceOn
7 Choi, O., J. Kim, C-M. Ryu, and C. S. Park. 2004. Colonization and population changes of a biocontrol agent, Paenibacillus polymyxa E681, in seeds and roots. Plant Pathol. J. 20: 97-102   DOI
8 Kang, J. H. and C. S. Park. 1997. Colonization pattern of fluorescent Pseudomonads on the cucumber seed and rhizoplane. Korean J. Plant Pathol. 13: 160- 166
9 Mavingui, P. and T. Heulin. 1994. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol. Biochem. 26: 801-803   DOI   ScienceOn
10 Ash, C., F. G. Priest, and M. D. Collins. 1993. Molecular identification of rRNA group 3 Bacilli [Ash, Farrow, Wall banks and Collins] using a PCR probe test; proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64: 253-260   DOI   ScienceOn
11 Faure, J-D. and S. H. Howell. 1999. In P. J. J. Hooykaas, M. A. Hall, and K. R. Libbenga (eds.). Biochemistry and Molecular Biology of Plant Hormones, pp. 461-474. Marcel Dekker, Inc., New York, U.S.A
12 Kim, D.-S., D. M Weller, and R. J. Cook, 1997. Population dynamics of Bacillus sp. L324-$92R_{12}$ and Pseudomonas fluorescens 2-$79RN_{10}$ in rhizosphere of wheat. Phytopathology 87: 559-564   DOI   ScienceOn
13 Sneath, P. H. A. 1986. Endospore forming gram-positive rod and cocci, pp. 1104-1137. In Krieg, J. R. and J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2. Williams and Wilken, Baltimore, MD, U.S.A
14 Glick, B. R. 1999. In Glick, B. R., Patten, C. N., Holguin, G. and Penrose, D. M. (eds.). Biochemical and Genetic Mechanisms Used by Plant Growth Promoting Bacteria, pp. 1-13. Imperial College Press, London
15 Cook, R. J. 1993. Making greater use of introduced microorganisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31: 53-80   DOI   PUBMED   ScienceOn
16 Chanway, C. P. 1997. Introduction of tree roots with plant growth promoting soil bacteria: An emerging technology for reforestation. Forest Sci. 43: 99-112
17 Katiyar, V. and R. Goel. 2004. Improved plant growth from seed bacterization using siderophore overproducing cold resistant mutant of Pseudomonas fluorescens. J. Microbiol. Biotechnol. 14: 653-657
18 James, E. K. and F. L. Olivares. 1998. Infection and colonization of sugar cane and other graminaceous plants by endophytic diazotrophs. Crit. Rev. Plant Sci. 17: 77-119   DOI   ScienceOn
19 McSpadden-Gardener, B. B. 2004.The nature and application ofbiocontrol microbes: Bacillus spp. ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathology 94: 1252-1258   DOI   ScienceOn
20 Timmusk, S., B. Nicander, U. Granhall, and E. Tillberg. 1999. Cytokinin production by Paenibacillus polymyxa. Soil Biol. Biochem. 31: 1847-1852   DOI   ScienceOn
21 Ryu, C.-M., C. H. Hu, R. D. Locy, and J. W. Kloepper. 2004. Study of mechanisms for plant growth promotion elicited by rhizobacteria in Arabidopsis thaliana. Plant Soil 286: 285-292
22 Kloepper, J. W., R. Rodriguez-Kabana, G. W. Zehnder, J. Murphy, E. Sikora, and C. Fernandez. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Austral. J. Plant Pathol. 28: 27-33   DOI   ScienceOn
23 Jung, W.-J., S.-J. Jung, K.-N. An, Y.-L. Jin, R.-D. Park, K.-Y. Kim, B.-K. Shon, and T.-H. Kim. 2002. Effect of chitinase-producing Paenibacillus illinoisensis KJA-424 on egg hatching of root-knot nematode (Meloidogyne incognita). J. Microbiol. Biotechnol. 12: 865-871
24 Handelsman, J. and K. Stabb. 1996. Biocontrol of soil-borne plant pathogens. Plant Cell 8: 1855-1869   DOI   ScienceOn
25 Dijksterhuis, J., M. Sanders, L. G. Gorris, and E. J. Smid. 1999. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J. Appl. Microbiol. 86: 13-21   DOI   ScienceOn
26 Glick, B. R. 1995. The enhancement of plant growth by free-living bacteria. Can. J. Microiol. 41: 109-117   DOI   ScienceOn
27 Maplestone, P. A. and R. Campbell. 1989. Colonization of root of wheat seedlings Bacillus proposed as biocontrol agents against take-all. Soil Biol. Biochem. 21: 524-550
28 Kloepper, J. W., C.-M. Ryu, and. S. Zhang. 2004. Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94: 1259-1266   DOI   ScienceOn
29 Ryu, C.-M., M. A. Farag, C.-H. Hu, M. S. Reddy, H. X. Wei, P. W. Pare, and J. W. Kloepper. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. USA 100: 4927-4932
30 Kloepper, J. W. 1992. Plant growth-promoting rhizobacteria as biological control agents, pp. 255-274. In Metting, F. B. Jr. (ed.). Soil Microbial Ecology: Applications in Agricultural and Environmental Management. Marcel Dekker Inc., NY, U.S.A
31 Lucy, M., E. Reed, and B. R. Glick. 2004. Applications of free living plant growth-promoting rhizobacteria. Antonie van Leeuwenhoek 86: 1-25   DOI   ScienceOn
32 Ryu, C.-M., C. H. Hu, M. S. Reddy, and J. W. Kloepper. 2003. Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol. 160: 413-420   DOI   ScienceOn
33 Ryu, C.-M., M. Farag, C. H. Hu, M. S. Reddy, P. Pare, and J. W. Kloepper. 2004. Bacterial volatiles induced systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026   DOI   ScienceOn
34 Timmusk, S. and E. G. H. Wagner. 1999. The plant growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: A possible connection between biotic and abiotic stress responses. Mol. Plant Microbe Interact. 12: 951-959   DOI   ScienceOn
35 Emmert, E. A. and J. Handelsman. 1999. Biocontrol of plant disease: A [gram-] positive perspective. FEMS Microbiol. Lett. 171: 1-9   DOI   ScienceOn
36 Ahmad, J. S. and R. Baker. 1987. Rhizosphere competence in Trichoderma harzianum. Phytopathology 77: 192-189
37 Kim, D.-S., R. J. Cook, and D. M. Weller. 1997. Bacillus sp. L324-92 for biological control of three root diseases of wheat growth with reduced tillage. Phytopathology 87: 551-558   DOI   ScienceOn
38 Lebuhn, M., T. Heulin, and A. Hartmann. 1997. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from different proximity to plant roots. FEMS Microbiol. Ecol. 22: 325-334   DOI   ScienceOn
39 Park, C. S., T. C. Paulitz, and R. Baker. 1988. Biocontrol of Fusarium wilt of cucumbers resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporium. Phytopathology 78: 190-194   DOI
40 Vogler, K. and R. O. Studer. 1966. The chemistry of the polymyxin antibiotics. Experientia 6: 345-416
41 Rovira, A. D. 1963. Microbial inoculation of plants. 1. Establishment of free-living nitrogen-fixing bacteria in the rhizosphere and their effects on maize, tomato, and wheat. Plant Soil 19: 304-314   DOI
42 Kloepper, J. W., R. M. Zablotowicz, E. M. Tipping, and R. Lifshitz. 1991. In Keister, K. L. and P. B. Cregan (eds.). The Rhizosphere and Plant Growth, pp. 315-326. Kluwer. Academic Publishers, Dordecht, U.S.A
43 Van der Weid, I., G. F. Duarte, J. D. van Elsas, and L. Seldin. 2002. Paenibacillus brasilensis sp. nov., a novel nitrogen-fixing species isolated from the maize rhizosphere in Brazil. Int. J. Syst. Evol. Microbiol. 52: 2147-2153   DOI   ScienceOn
44 Helbig, J. 2001. Biological control of Botrytis cinerea Pers. Ex Fr. in strawberry by Paenibacillus polymyxa isolate 18091. J. Phytopathol. 149: 265-273   DOI   ScienceOn
45 Holl, F. B., C. P. Chanway, R. Turkington, and R. A. Radley. 1988. Response of crested wheat grass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa . Soil Biol. Biochem. 20: 19-24   DOI   ScienceOn